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1. Summary 
 

This is the final report on DARPA contract F30602-00-C-0080, “Dependence Graphs for the 
Information Assurance of Systems”.  The project was originally part of DARPA’s 
Information Assurance Science and Engineering Tools (IASET) project.  Upon the 
cancellation of IASET by DARPA, the effort was reassigned to the Organically Assured and 
Survivable Information Systems (OASIS) project, where it was refocused and wrapped up 
early. 

 

2. Problem 
 

The motivation for the project was the observation that although information flows are 
critical for understanding assurance and survivability of systems and system designs, current 
tools for understanding information flows in systems are poor. Ad hoc approaches are 
unsystematic, error-prone, and lack firm semantic foundation. Formal approaches like code 
verification are slow, require too much expertise, and do not scale; high-level modeling is too 
abstract and too remote from actual systems. 

 

3. Opportunity 
 

The project sought to remedy the paucity of tools for analyzing information flows in systems 
and system designs by exploiting recent advances in tools for understanding information 
flows in sequential programs.  Dependence analysis provides a sound and tractable basis for 
understanding such information flows.  The theory of dependence graphs and program 
slicing, as developed by compiler and software engineering researchers, had matured.  There 
had been considerable investment in generic dependence-graph tools and component 
technology for sequential code, and products were then emerging. In contrast to the situation 
for sequential programs, the theory of dependence analysis for concurrent programs, 
systems, and system designs, and corresponding tool support, was lagging behind. 

At the same time, UML had become a de facto standard for design, and Rational Rose had 
achieved market dominance. Thus, a tool for analyzing information flows based on Rose had 
the potential for significant impact on DOD and industrial practice.  By basing our work on 
Rose for Real Time (Rose/RT), which includes code generation, we planned to address both 
system designs and system implementation in the same integrated framework. 
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4. Goals 
 

The specific goal of the project was the development of two prototypes: SystemSurfer and the 
Information Assurance Workbench. 

SystemSurfer was to be a generic tool for static analysis of dependences in systems and their 
designs.  It would support heterogeneous system descriptions consisting of UML, code, and 
(as an option that was never supported) even hardware descriptions.  It would support both a 
model-centered view (with automatic modeling of legacy code modules that could be 
incorporated in system design) and a code-centered view (in which the environment for code 
could be modeled in UML).  SystemSurfer was to be both an interactive GUI-based system, 
and an API for programming customized batch applications. 

The Information Assurance Workbench (IAW) was to be an IA&S-specific tool layered on 
SystemSurfer.  The IAW was to address such sample IA applications as the analysis of covert 
channels, buffer overruns, and trusted/untrusted separation. 

 

5. Starting Point 
 

The starting point for the project was two existing COTS systems: CodeSurfer (from 
GrammaTech) and Rose for Real Time (from Rational). 

CodeSurfer is a tool for static analysis of dependences in sequential code, based on a 10-year 
DARPA project at University of Wisconsin.  CodeSurfer is both a packaged COTS product 
and reusable component technology.  It has a commercial-strength front end for ANSI C, and 
experimental front ends for Jovial, Verilog, VHDL, and SPIN.  Front ends for C++, x86 
machine code, and JVM are under development. 

Rose for Real Time (Rose/RT) is a tool for system designs and implementations.  It is a 
marketed as a COTS product with OLE interfaces.  Rose/RT supports standard UML 
extended with ObjecTime’s ROOM concepts: capsules; ports; protocols.  Rose/RT programs 
are a collection of lightweight threads that communicate through ports with well-defined 
protocols, modeled by finite-state machines, with transition actions written in C, C++, or 
Java. 

 

6. Approach 
 

The plan was to build SystemSurfer by using and extending CodeSurfer’s component 
technology, and then to build the Information Assurance Workbench as a SystemSurfer 
client. The validation plan was to evaluate the prototypes with the aid of GrammaTech 
customers Sandia National Laboratory, Institute for Defense Analysis (IDA), and the Naval 
Research Laboratory (NRL), and with other IASET contractors.   
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The main areas where the CodeSurfer dependence-graph component technology needed to be 
extended, and where substantial research was needed, were: 

• Concurrency (dependence modeling of processes, synchronization, and 
communication), 

• Asynchronous control (dependence modeling of interrupts, exceptions, and aborts) 

• Abstract interpretation (symbolic propagation of events, and the decomposition of 
message-header analysis). 

Because SystemSurfer was intended to work on heterogeneous system descriptions that 
involved both UML designs and code modules, these issues needed to be addressed for both 
Rose/RT models and C/C++ code.  Additional areas in the existing CodeSurfer infrastructure 
where research was needed to support SystemSurfer and IAW requirements included: 

• Precision and performance improvements 

• User interface improvements 

 

7. Results 
 

SystemSurfer 
The goal of the work was to design a program dependence graph (PDG) representation for 
concurrent UML state-machine models.  Such a dependence-graph representation would 
permit useful slicing operations to be carried out on Rose/RT specifications for various 
purposes: to help programmers understand an existing specification, to help uncover errors in 
a specification, to understand the impact of a proposed change to a specification, and to help 
create new specifications by refining or combining existing specifications. 

• The plan we devised appears as Appendix A of this report: 

Binkley, D., Horwitz, S., Macolini, K., Anderson, P., and Teitelbaum, T., 
Slicing Rose/RT Specifications, GrammaTech report, December 4, 2002. 

• Our work on SystemSurfer was to have been validated, in part, using a UML model 
of the NRL Pump.  The model we developed for that purpose appears as Appendix B 
of this report: 

GrammaTech, A UML-RT Model of the NRL Pump. 

• Two alternatives were considered for accessing the UML state-machine models.   

o The first possibility was to access the model directly using the Rose/RT open 
OLE interface.  The advantage of this approach is that it would be based 
directly on the UML state machines, and would therefore be independent of 
the implementation language (C, C++, or Java) into which the diagrams are 
translated by Rose.  The disadvantages are (a) it would be problematic to be 
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sure that we captured the exact semantics of Rose’s state machines, and (b) it 
would have to be maintained as Rose evolved.   

o The second possibility we considered for obtaining the dependence graphs for 
UML state machines was to apply CodeSurfer/C to the C code that Rose can 
generate for models.  The main advantage of this approach is that it guarantees 
that we capture the exact semantics of Rose’s state machines, as it is based on 
the C code Rose generates for implementation purposes.  The main 
disadvantage is a possible loss of precision caused by the use interpretation 
and variables in the generated code instead of explicit control flow.  In 
particular, the central section of the generated code is a state-machine 
interpreter written as a set of nested switch statements.   

In analyzing the pros and cons of this approach, we identified show-stopping 
loss of precision associated with CodeSurfer’s treatment of switch-statements.  
We addressed this problem, and solved it in the publication: 

Kumar, S. and Horwitz, S., Better slicing of programs with jumps and 
switches. In Proceedings of FASE 2002: Fundamental Approaches to 
Software Engineering, (Grenoble, France, April 8-12, 2002).  

The paper is attached as Appendix C of this report.  The solution has been 
implemented and transitioned into the COTS CodeSurfer product. 

When the project was reassigned from IASET to OASIS, the focus shifted and further 
work on SystemSurfer was discontinued. 

Information Assurance Workbench 
SystemSurfer would have been a general-purpose tool for understanding systems; in contrast, 
the role of the Information Assurance Workbench (IAW) was to support operations more 
narrowly focused on information assurance needs. The IAW would have been a kind of 
laboratory for developing and applying new kinds of information-assurance analyses enabled 
by the availability of the system-wide dependence information provided by SystemSurfer. We 
aimed to support three specific analyses: covert channel identification, trusted subset 
identification, and trusted/untrusted separation. 

Detailed work in support of our aims included the following:  

• New ways to pose dependence queries.  In discussion with security analysts at 
Sandia National Labs, we learned that in order to support their preferred way to pose 
information-flow analysis questions, it was necessary to support queries posed in 
terms of variables, not program points.  Accordingly, we introduced new query-input-
modes for the dependence queries.  The mode can be one of the following: 

o In “point mode”, a query can be posed in terms of a set of points in the 
program, but the variables that are used or defined at the points are not 
distinguished. 
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o In “variable mode”, the user can pose queries in terms of the variables in the 
program.  For example, a variable forward slice takes as a parameter a set of 
variables.  It first finds all points in the program where the variables are 
defined, and then does a regular forward slice from that point. 

o In “point-and-variable mode," the user can pose queries in terms of individual 
variables that are used or defined at a particular set of points in the program.  
This can also be thought of as queries in terms of edges in the dependence 
graph.  Any point in the program may either use or define a set of variables.  
This mode allows the user to select a subset of the variables from which to 
start the query. 

o In “function mode”, the user can pose queries in terms of the names of 
functions in the program. 

All of the basic queries—slice, backward slice, chop, truncated chop, predecessors 
and successors—were extended to allow queries to be posed in these terms. 

• New queries to reveal program flows.  We implemented a prototype model checker 
to support path queries posed in computation-tree logic (CTL).  The goal of the work 
was to provide an open and expressive language for code-based assurance queries in 
the Information Assurance Workbench (IAW).  A description of the prototype we 
developed as Appendix D of this report: 

Ezick, J., Richardson, David W., and Teitelbaum, T., Practical Model 
Checking and Example Generation for Context-Free Processes, Technical 
Report, May 15, 2001. 

This work has been continued under the auspices of a DARPA SBIR Phase II 
contract: “Verification of Hierarchal Graph Structures. 

• Performance and precision improvements in the CodeSurfer infrastructure. 

o Pointer analysis.  The precision of the dependence graph and the scalability of 
the entire system are highly dependent on the accuracy of the pointer analysis 
algorithms used. Higher accuracy yields fewer false-positive results.  Also, the 
more accurate the pointer analysis, the more scalable are the algorithms for 
building the dependence graph.   

We were able to achieve significant speed increases.  In addition to making 
speed improvements, we extended the algorithm to support specialized 
treatment of structure fields.  Our effort on pointer analysis broke the back of 
this problem in the sense that it is no longer the bottleneck it once was. 

o Context sensitive GMOD/GREF.  We improved the precision of the analysis 
of global variables usage at call sites.  The previous situation can be described 
in terms of the following example: 
        int x,y; 
        void f(*int p) { *p = 0; } 
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        void m(void) { f(&x); } 
        void n(void) { f(&y); } 
        void main(void){ m(); n(); } 
In this example, the variables x and y both showed up as being modified by 
both m() and n().  This is the GMOD set.  However, it is evident from the 
code that m can only modify x, and n can only modify y.  This situation 
shows up in many examples.  It was particularly apparent when running the 
system on the sendmail benchmark. 

The solution is to have a pass in the analysis that filters the GMOD set to 
exclude variables that cannot possibly be accessed by a given call site. 

The following table shows the effect of the optimization on some of our 
standard benchmark programs.  Each column has three entries.  The first 
shows the metric before the optimization was implemented.  The second entry 
is after the implementation.  The third is the percentage change. 

 

  Size of 
SDG (Mb) 

Summary 
edge time 

Total build 
time 

 Forward 
slice time 

Program LOC before after change before after change before after change before after change 

compress 1937 1.15 0.59 -48% 0.05 0.05 0% 1.98 0.75 -62% 0.02 0.01 -50% 

cpp 4079 4.35 3.66 -16% 1.4 0.94 -33% 11.31 9.16 -19% 0.36 0.19 -47% 

byacc 6626 4.53 4.64 3% 0.26 0.32 -23% 9.09 6.66 -27% 0.44 0.29 -34% 

cadp 12787 9.36 7.42 -21% 0.73 0.83 14% 21.58 13.15 -39% 0.22 0.15 -32% 

flex 12400 6.47 6.09 -6% 1.89 1.97 4% 19.21 13.91 -28% 0.87 0.58 -33% 

ijpeg 28177 19.76 15.02 -24% 7.59 1.44 -81% 532.66 563.75 6% 4.67 1.37 -71% 

go 29246 24.45 19.21 -21% 10.47 7.2 -31% 59.87 39.21 -35% 12.81 6.86 -46% 

ntpd 61068 40.24 35.44 -12% 41.73 34.99 -16% 281.25 205.36 -27% 22.75 20.11 -12% 

 

• Outreach.  We participated in the Workshop on Inspection in Software Engineering 
in Paris, 2001, where we explained the relevance of our DARPA-supported work to 
software inspection.  The workshop paper appears as Appendix E of this report: 

Anderson, P. and Teitelbaum, T., “Software Inspection Using CodeSurfer.” 
Workshop on Inspection in Software Engineering (CAV 2001), (Paris, France., 
July 18-23, 2001). 

Two journal papers based on this report are currently under review for publication in 
IEEE Software, and IEEE Transactions on Software Engineering. 
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8. Conclusions 
 

We believe that our work was on track and making good progress at the time DARPA 
cancelled its IASET project. Better tools for understanding information flows in systems and 
system designs are still needed, and we believe the opportunity to address that need in the 
manner we proposed still exists. 
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Slicing Rose/RT Specifications ∗

David Binkley, Susan Horwitz, Kirk Macolini, Paul Anderson, Tim Teitelbaum
GrammaTech Inc.

317 N. Aurora St., Ithaca, NY 14850

December 4, 2000

1 Introduction

This report summarizes GrammaTech’s work on the design of program dependence graphs (PDGs) to
represent Rose/RT specifications. The goal of the work was to design a PDG that would permit useful
slicing operations to be carried out on the Rose/RT specification; for example, to help programmers
understand an existing specification, to help uncover errors in a specification, to understand the
impact of a proposed change to a specification, and to help create new specifications by refining or
combining existing specifications.

The first part of the report provides background material on the contents of a Rose/RT speci-
fication; the second part describes how to build a PDG to represent a Rose/RT specification; the
third part gives some examples; and the fourth part discusses some open questions.

2 Background on Rose/RT

There are three major kinds of diagrams used in a Rose/RT specification: the class diagram, the
state diagram, and the structure diagram. The contents of these diagrams are discussed below,
using the example in Figures 1, 2, 3, 4, and 5. (See “Using UML for Modeling Complex Real-Time
Systems” for more detailed definitions.)

2.1 Class Diagram

The class diagram shows relationships between two stereotypes of a UML class: capsules and pro-
tocols. It shows aggregation, but does not show any connections; those are given in the structure
diagrams. The example class diagram shown in Figure 1 defines five classes: terminal, call, Hard-
wareInterface, Voice, and TerminalHook. The icons in the upper-right corners indicate that terminal,
call, and HardwareInterface are capsules, and that Voice and TerminalHook are protocols. More
information about the contents of a class diagram is provided below.

Capsules: A capsule describes the structure of an entity in the specification. Each instance of a
capsule is a lightweight thread whose behavior is described by the finite-state machine that is
specified in the capsule’s state diagram. Each capsule is drawn as a box divided into four parts
(by horizontal lines). The contents of those parts are class-name, attributes, operations, and
ports. Example: The call capsule has class-name “call”, has no attributes, has one operation
“class.partner()”, and has one port “terminalRole”.

∗This work was funded by DARPA contract F30602-00-C-0080 (under project “Dependence Graphs for Information
Assurance of Systems” in program “Information Assurance Science & Engineering Tools” (IASET))
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Figure 1: Example Class Diagram.
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Figure 2: Example State Diagram (for the Call Capsule).

Figure 3: Example State Diagram (for the Terminal Capsule).
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Figure 4: Example Structure Diagram (for the Call Capsule).

Figure 5: Example Structure Diagram (for the Terminal Capsule).
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Protocols: A protocol describes the language of valid signals. It is possible to specify that this
language must be the language of a given finite-state machine; however, this feature is not
in common usage, nor is it enforced by Rose/RT. Each protocol box is divided into three
parts (by horizontal lines). The contents of those parts are protocol-name, incoming signals,
and outgoing signals. There are four special built-in protocols: Log, Timing, Frame and
Exception. Example: The TerminalHook protocol has protocol-name “TerminalHook”, two
incoming signals “offHook()” and “onHook”, and two outgoing signals “ring()” and “buzz”.

Associations: Edges connecting classes indicate associations between capsules and protocols. The
edges between capsules with a black diamond at one end and an arrow head at the other end
mean “sub-capsule” (however, note that a sub-capsule is not a sub-class). For example, the call
capsule has two sub-capsules: terminal and HardwareInterface. A capsule and its sub-capsules
“live and die” together. For example, a HardwareInterface (sub)-capsule is created when a call
capsule is created, and is destroyed when the call is destroyed.

The directions of the edges indicate “navigability.” For example, a call can tell you what its
associated HardwareInterface is, but not vice versa. The edges from a capsule to a protocol
mean that one or more of the capsule’s ports uses that protocol. The edge is labeled with the
port name and with “<<port>>.”

Role Names: Edges between capsules (indicating a sub-capsule relationship) can be labeled with
“role names” (e.g., the edge from call to terminal is labeled “terminals”). These role names
are used in structure diagrams. For example, in the structure diagram for call (shown in
Figure 4), one box has the text “/pstn” and the other has “/terminals.” Those two names are
the role names for the sub-capsules of a call. If a capsule has two instances of a sub-capsule
that play different roles (e.g., are wired up to other sub-capsules in different ways) then the
role name used in the class diagram would clarify which sub-capsule instance in the structure
diagram was playing which role.

Multiplicity: Numbers on edges indicate “multiplicity.” For example, a call has two terminal
sub-capsules and a HardwareInterface has two ports named “terminals” that use the Voice
protocol.

2.2 State Diagram

2.2.1 States and Transitions

A capsule’s state diagram defines the behavior of all instances of that capsule. The behavior
specified used a finite-state machine (FSM). As usual, this FSM includes a set of states (one of
which is a special initial state), and a set of transitions from state to state. Each transition is
labeled with a trigger of the form s1, s2, ..., sn : p1, p2, ..., pk, where each si is a signal and each pj is
a port (the special symbol * can also be used to mean any signal). The idea is that the transition
is to be taken if any of the signals si is received on any of the ports pj. Note that to be a valid
specification, all of the signals must be available on all of the ports; i.e., in the class diagram, for
each signal si and each port pj :

1. port pj must be specified for this capsule, and

2. there must be an association between this capsule and a protocol that includes signal si.

A transition may also have a guard (consisting of a C++ boolean expression), in which case the
transition is only taken if the guard is true. In addition, a transition can have one or more choice
points, each with an associated boolean expression. Choice points allow the transition to be made to
different successor states depending on the values of the boolean expressions: at each choice point,
the value of the expression determines which of the two succeeding segments of the transition is
taken. Note that the use of a choice point with boolean expression B is not the same as having
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two guarded transitions, one guarded with B and the other guarded with !B. This is because when
a guard is false, not only is the transition not taken, but the trigger is “consumed” (i.e., the FSM
must wait until another signal is received before attempting to take a transition).

States and transitions can be labeled with actions; a state can include both an entry action (to
be performed each time the state is entered) and an exit action (to be performed each time the state
is exited). Transition actions are performed each time the transition is taken. Actions are arbitrary
C++ code, possibly including message sends. A message consists of a signal and optionally other
data, sent on a particular port. Assuming that there are no dynamic instances of capsules or rewiring
of ports, the destination of the message is determined by the wiring together of ports specified in
the structure diagram (see Section 2.3 below).

In a Rose specification, an edge from state to state with a black arrowhead means that there
is an action associated with that transition. A white arrowhead means there is no action. In the
display of a Rose/RT state diagram – and thus in the example state diagrams given here – triggers,
guards, and actions are all represented using identifiers; the actual trigger, guard, or action code
can be viewed through the use of a dialog box.

2.2.2 Hierarchical FSMs and History

A capsule’s FSM can be hierarchical : a state can be defined in terms of a sub-FSM (i.e., a set of
substates). A sub-FSM can be entered in three ways:

1. entry to the initial state,

2. entry to a specific substate, or

3. entry via history (described below).

Each state of a sub-FSM inherits the outgoing transitions of its parent state. For example, suppose
that FSM S consists of a sub-FSM that includes a state s. If s has no outgoing transition labeled
X, but S does have such an outgoing transition to state T, then from (sub)-state s, the transition
to T is taken on input X.

As mentioned above, a transition to a state S with substates can be done via history. In this case
when entering S the particular substate entered is the last substate visited on the previous visit to
S. If S has has never been visited before, then the substate that is entered via history is its FSM’s
initial state.

Example: In the state diagram in Figure 9, state M has three substates: an initial state, state
Wash and state Dry. When state M is entered via the transition labelled “init” from the top-level
FSM’s initial state, it is the initial state of the sub-FSM that is entered (because the specification
includes no explicit transition into the sub-FSM on “init”. When stateM is entered via the transition
labeled “done” from state Handler, M ’s sub-FSM is entered via history (because the specification
includes an edge labeled “done” that enters the sub-FSM from outside, and whose target is the
special history state, denoted using a small circle labeled “H”). If the sub-FSM had most recently
been in state Wash when it received an “interrupt” signal, then the re-entry to the sub-FSM via
history would cause state Wash to be re-entered (and similarly, if it had most recently been in state
Dry when it was interrupted, it would be the Dry state that would be re-entered via history).

2.2.3 The Initial State

The initial state of a FSM is indicated in a state diagram by a black circle. The transition out of
the initial state is labeled with a special “initial event”. Conceptually, the initial event is sent to
all capsules by the system when the program starts. No other FSM transitions can be taken until
all FSMs have finished taking their initial-event transitions. In the case of sub-FSMs, the initial
transition is taken under two circumstances:

• when the sub-FSM is entered via entry to its initial state, or

• when the sub-FSM is entered via history, but the sub-FSM has not been previously visited.
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2.3 Structure Diagram

A capsule’s structure diagram is used to specify the patterns of communication between that capsule
and its sub-capsules, as well as defining which ports are used to communicate with “the outside
world”. The structure diagram shows all of the capsule’s ports, and shows how its subcapsules are
wired together. It also specifies the capsule instances and the static connectors used to connect
specific port instances.

In a structure diagram, if multiple subcapsules have identical wiring, they can be shown using
essentially one rectangle with a multiplier number in the upper right corner (and shadowing to
suggest overlaying). For example, in the call structure diagram in Figure 4, there are two terminal
sub-capsules, shown using this technique.

A capsule’s ports are shown as black rectangles with little protocol icons above them (they look
like Martians). Ports are the connection points for capsules into which protocols are plugged. There
are two kinds of ports that are used in three difference ways.

Kind 1: Relay ports Relay ports allow the direct (zero overhead) delegation of signals destined
for a capsule to a sub-capsule. Relay ports can only appear on the boundary of a capsule and,
consequently, always have public visibility.

Kind 2: End Ports End ports are the ultimate sources and sinks of all signals sent by capsules.
To send a signal, a state machine invokes a send or call operation on one of its end ports. End
ports may appear on the boundary of a capsule with public visibility. These ports are called
public end ports.

Use 1: A port drawn inside the capsule’s rectangle with no connection to a sub-capsule is connected
to the outside world and there should be sends and/or receives for this port on some of
the capsule’s FSM edges that allow this capsule to communicate with the outside world. In
Figure 5, there are two such ports (log and testPort), which are end ports.

Use 2: A port drawn inside the capsule’s rectangle with a connection to a sub-capsule is not con-
nected to the outside world. There should be sends/receives in the capsule’s FSM and in the
sub-capsule’s FSM machine allowing the capsule and the sub-capsule to communicate with
each other. In Figure 4 there is one such port (terminalRole), which is an end port.

Use 3: A port drawn on the edge of the rectangle is connected to some other capsule’s port (not
to the outside world). In Figure 5, there are two such ports (pstn and hookRole). Note
that, as specified in the call capsule’s Structure Diagram, the pstn port is connected to the
HardwareInterface sub-capsule’s port, and the hookRole port is connected to the call cap-
sule’sterminalRole port. In general, these ports are relay ports if connected to a subcapsule
and end ports otherwise.

3 Building a PDG from a Rose/RT Specification

For each instance of a capsule in a Rose/RT specification, there is one CFG (and one PDG) that
represents the capsule’s FSM. Edges between the PDGs, called message dependence edges are used
to represent the dependences induced by sends and the corresponding receives. (These message
dependences are similar to the interference dependences that have been defined in the literature on
program-dependence graphs for concurrent programs [4, 9, 5]. Other than the addition of message
dependences (which requires analyzing the Rose/RT specification to find the send/receive pattern-
s), the correspondence between the CFG and the PDG is standard (i.e., once the correspondence
between the Rose/RT specification and the CFG has been defined, standard techniques can be use
to build the corresponding PDGs.

Building the CFGs for a Rose/RT specification is discussed below, assuming that there are no
dynamic instances of capsules or rewiring of ports, and that all messages are asynchronous.
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3.1 Building a CFG from a Rose/RT Specification

The correspondence between a capsule’s FSM and the nodes of the CFG that represents that FSM
are as follows:

• For FSM M, the CFG includes a node labeled “Enter M ” and a node labeled “Exit M ” (thus,
the CFG for a FSM is somewhat analogous to the CFG for a procedure).

• Each action in the FSM (associated with an transition, with state entry, or with state exit) is
represented by a separate procedure (and thus a separate CFG); instances of the actions are
represented in the CFG for the FSM as calls to those procedures (this avoids replication of
action code while allowing inlining to remove calls to small or seldom used actions).

• Each landable state S produces a fragment in the CFG that begins with a node labeled “Start
S” and ends with a node labeled “End S” (Figure 7 shows four such fragments). State S is
landable if the FSM can come to rest in S. This occurs when S is a simple state (one with no
substates) or when S is a composite state (one with nested states) that has no initial transition
and there is a transition that ends at S. In the latter case, a transition that ends at S will not
continue to any of S ’s substates. For example, in Figure 6 states Off, Maint, Running, and
Done are landable while state On is not.

• The nodes of the CFG fragment built for landable state S represent the receiving and processing
of messages. The node labeled “Start S” is followed by a receive node, then a collection of
nodes that represent a switch. The switch has one branch for each possible transition out of
state S. Each branch is composed of a sequence of calls to the action routines that represent
the actions the FSM executes when it takes the corresponding transition. For example, the
FSM in Figure 6 includes a transition from state Off to state Maint with state-exit action
A3, transition action A4, and state-entry action A5; thus, in the switch in the sub-CFG
that represents state Off (shown in Figure 7), there is a branch for case Maint with the
corresponding sequence of calls (shown all in one node to save space in the diagram). The
sequence of calls is followed by a goto node whose target is either the state that is the target
of the FSM transition, or a history choice node (described below). The switch also includes a
default case that consumes (and thus ignores) any trigger for which the state has no defined
transition. The default case ends with a goto node back to the receive node.

• There are four additional FSM constructs that must be represented in the CFG: transition
guards, choice points, inner internal self-transitions, and history.

1. Transition guards: When a transition includes a guard, the corresponding branch of the
switch statement in the CFG includes a call to the guard code, which returns a boolean
value. That value is used in an if node whose true successor is the sequence of action
calls described above, and whose false successor is a goto node whose target is the receive
node just before the switch; i.e., if the guard is false, then the transition is not taken but
the incoming message is consumed, and the FSM waits for another message. Example:
The FSM in Figure 6 includes a guard when leaving state On. Therefore, its CFG, shown
in Figure 7, includes a node labeled “if guard1.” This node actually appears twice in the
figure because both substates of On must deal with the guard.

2. Choice points: A choice point is also represented by an if node. In this case, the true
branch includes calls to the action routines that correspond to the actions performed
if the condition at the choice point is true, while the false branch includes calls to the
actions performed if the condition is false.

3. Inner internal self-transitions: In a Rose/RT specification, a FSM state that has sub-
states can have a special kind of self-loop called an inner internal self-transition. When
this transition is taken, the only action that is performed is the action associated with that
transition (no state-exit or state-entry actions are taken). Therefore, the CFG fragment
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that corresponds to one of these transitions includes only a call to the action associated
with the transition (there are no calls to state-entry or state-exit actions).

4. History: Handling history requires three additional components in the CFG. First, for a
state S that contains a transition to history, a new history-choice node labeled “S -HC” is
added to the CFG. This node has an outgoing edge for each substate that can be reached
through history. For the transition through history to substate T, the history choice
node is followed by a series of calls to the entry actions of each nested state encountered
between S and T. The final node in this series has an edge to T ’s start state. Example:
The FSM in Figure 9 uses history. As a result, its CFG, shown in Figure 10, includes the
history choice node labeled “M -HC.”
The second addition for history involves labels on certain CFG edges. In particular, as
noted above, from each history-choice node there is a path in the CFG to the Start node
for each substate that can be reached through history; the last edge in each such path is
labeled with the name of the reached state. Example: the three edges out of the “M -HC”
node in Figure 10 are labeled wash, dry, and M-Init (the names on their respective target
Start nodes).
Also, the edges from goto nodes that represent transitions from within S and its substates
to states outside of S, are labeled with the compliment of the state being departed (the
state name with a bar above it). Example: In Figure 10, these labels are “wash” and
“dry”.
The motivation for these edge labels is that the presence of history makes certain CFG
paths non-executable. For example, if the FSM in Figure 9 exits substate Wash of state
M and then returns to state M via history, it must go to substate Wash (not Dry).
Thus the CFG path: Start Wash → receive → switch → case interrupt → call A3 →
goto Start Handler → Start Handler → receive → switch → case done → goto M-HC
→ M-HC → Start Wash is an executable path, while the CFG path that is the same
except that it ends with M-HC → Start Dry is not executable. In terms of the CFG edge
labels, the executable path will include an edge labeled Wash followed later by an edge
labeled Wash (i.e., two matching edges), while the non-executable path will include an
edge labeled Wash followed later by an edge labeled dry (i.e., two non-matching edges)
Thus, executable CFG paths are those whose sequence of labels is in some context-free
language (in this case, the language of matching barred and unbarred names), while the
sequence of edges labels on non-executable paths are not in that language.
The third addition is a CFG fragment that represents a transition to the initial state of
a sub-FSM via history. If a transition ends on history in state S and S has never been
visited before then history takes S to its initial state. This is represented in the CFG by
a node labeled “Start S -init”, which is the target of an edge from S-HC labeled “S -init.”
There is also a node labeled “End S -init” and a sequence of calls to the action routines
that reflect the actions the FSM executes upon a transition to S ’s initial state. Example:
In Figure 9 there are no actions associated with the initial transition in M ’s sub-FSM;
thus, the resulting CFG fragment (Figure 10) includes only the nodes labeled “Start M -
init,” “End M -init,” and “goto Start Wash”. This final node reflects M ’s sub-FSM’s
initial transition to state Wash.

4 Examples

This section presents some example Rose/RT state diagrams, and the corresponding CFGs and
PDGs. In each case, the motivation for considering the example is discussed.
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Figure 6: State Diagram for the Hierarchical FSM Example

4.1 An Example with Substates

Figures 6, 7, and 8 show the FSM, CFG, and PDG for an example that illustrates a hierarchical
FSM. (In Figure 7, sequences of calls are represented together in a single node to save space. As can
be seen in Figure 8, each call is actually represented by a separate node.) The top level FSM has
three states Off, On, andMaint. The state On has two substates: Running and Done. This example
illustrates two things: First, the effect of a parent state’s outgoing transition on its substates, and
second how a guard on such a transition is handled.

As discussed in Section 2.2.2, each state of a sub-FSM “inherits” the outgoing transitions of its
parent state. In this example, neither state Running nor state Done has an outgoing transition
labeled “down”, but their parent state, state On, does have such a transition (to state Off ). Note
that the transition has a guard (guard1 ). Therefore, when the FSM is in one of the substates, and
receives a “down” trigger, the following happens:

• The guard is evaluated; if it is false; nothing further happens. If is it true:

1. The exit action for the current substate is performed.

2. The exit action for the parent state (On) is performed.

3. The transition action is performed.

4. The entry action for state Off is performed.

5. The new current state is State Off.

These actions are reflected in the two sub-CFGs for states Running and Done.

4.2 An Example with History

This example illustrates history. Figure 9 shows the FSM with two states (M and Handler). State
M has two substates (Wash and Dry). The FSM cycles between Wash and Dry until an interrupt
occurs, which causes a transition to Handler. When Handler finishes it transitions, using history,
back to whichever substate of M was interrupted.

Figures 10, and 11 show the corresponding CFG, and PDG. First, look at the parts of the
CFG that correspond to the FSM transition from state M to state Handler (due to the receipt
of an “interrupt” message): these are the “interrupt” cases in the switches under “Start Wash”
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Figure 9: State Diagram for the History Example

and “Start Dry” (since Wash and Dry are the substates of M ). The edges from the nodes labeled
“goto Handler” to “Start Handler” are labeled “wash” and “dry” (i.e., the labels correspond to the
substates of state M that are being exited).

Now look at the part of the CFG that corresponds to the receipt of a “done” message while
in state Handler. The target of the goto node in that part of the CFG is the history-choice node
(labeled “M -HC”). The edges out of the history choice node to “Start Wash” and “Start Dry” are
labeled wash and dry. As explained in Section 3.1, these edges are included so that executable CFG
paths can be defined as those paths whose sequences of labels are members of some context-free
language. The history choice node and the associated edges labels also occur in the PDG, where
they serve a similar purpose.

The history choice node also has an outgoing edge labeled “M-init”. This is because, in general,
if state S includes a transition to history and no substate of S has been visited (i.e., on the first
visit to S ), then history takes the machine to the initial state. This state is represented by the
sub-CFG that includes the three nodes labeled “M-init”, “goto Start Wash”, and “End M-init”. In
this particular example, the machine can never go to M ’s history without having previously been in
state M (so the sub-CFG that represents this situation is not necessary). It is possible that static
analysis could be used to recognize such situations and thereby omit the unnecessary CFG (and
PDG) nodes and edges.

4.3 An Example with Actions and Useful Slices

This example, shown in Figures 12, 13, 15, 14, and 16, illustrates multiple processes (FSMs), and
the potential for static analysis to reduce the number of message-dependence edges in the PDG.
It also provides an example of slicing a Rose/RT specification. The example involves reading stu-
dents’ homework and exam scores, and computing each student’s final grade as well as the average
homework and score scores for the class as a whole. It includes four processes (four capsules): one
to do the reading, one to compute each student’s final grade, one to compute the class’s homework
average, and one to compute the class’s exam average.

The transition actions in the state diagrams for this example are important, so they are shown
explicitly. For the initial transition in the state diagram for the reader capsule, the action is named
“A main” and the corresponding code is shown to the right of the diagram. For the other state
diagrams, the actions are given on the transitions themselves, using C++ code inside curly braces.
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The dotted and dot-dashed edges in the PDGs (Figures 14 and 16) are message-dependence
edges, which connect sends and receives. The structure of the main and student grades machines
are such that not all sends can reach all receives (and similarly for some of the other messages).
Those that are possible are shown using dotted edges, while those that are not possible are shown
using dot-dashed edges. Assuming that messages do not get lost (and thus the machines do not get
out of sync) it should be possible to identify those message dependences that are indicated using
dot-dashed edges using static analysis, and thus to omit them from the PDG. (Note that to avoid
clutter in Figures 14 and 16 message-dependence edges to the second part of the PDG are shown
going to and coming from small dashed circles.)

This examples also illustrates that slicing of Rose specifications is viable. Hand-crafted C code
was used to produce a PDG, which was then used to perform two slices: As desired, the slice from
“sum” in the exam FSM machine does not include the homework machine, and the slice from the
count variable does not include any values, just the calls.

5 Open Questions

5.1 Slicing FSMs

In the case of procedural programs, the goal of a backward slice from a component S has been
defined to be:

• To include all components of the program that might affect the execution of S [8].

• To produce a projection of the program so that (barring non-termination) S is executed the
same number of times, and the variables used at S have the same sequences of values, in the
original program and in the projection [7].

• To identify all components on which S is semantically dependent [6].

Defining a similar goal for a slice of a Rose/RT specification is an open question. There are
several aspects to consider, including which FSM paths should be included in a slice, and which
transition labels should be included in a slice.

For example, consider computing a slice from some component of a FSM state S in a Rose/RT
structure diagram. How much of the rest of the FSM should be included in that slice? In many
cases, FSMs are strongly connected (or close to being strongly connected), so a naive approach that
follows paths backward in the FSM might always include the entire FSM in every slice. A better
possibility might thus be to include only acyclic paths from the initial state to state S.

Similarly, when a FSM transition is included in a slice, should the labels on that transition (its
trigger, guard, and action) also be included? If the trigger is included, then should the slice also
include all related send actions (from other FSMs)? Treating triggers this way is similar to treating
them like predicates in a normal program (where all of a node’s control ancestors get included in its
slice). We might prefer to think of the path from start to S like the (straight-line) path in a CFG
from the CFG’s enter node to a node n. In that case, the nodes along that path are included in the
slice only if there is data dependence involved.

When slicing with respect to action A of state S, other possibilities are to include only the trigger
associated with A, or those triggers that have some parameters used in A.

Note that some of these decisions will determine whether slices of Rose/RT specifications are
themselves legal specifications (for example, since transitions must be labeled with triggers, not
just with actions, leaving some triggers out of a slice can lead to a slice that is an incomplete
specification).

5.2 Slicing Concurrent Programs

Rose/RT specifications involve messages being sent from one FSM to another. Also, the states of
a FSM in a structure diagram can include arbitrary local variables, including pointers, and those
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pointers can be passed in messages as parameters to other FSMs (other processes). This means that
slicing a Rose/RT specification has some issues in common with slicing concurrent programs, which
is a problem that has been studied in the past [1, 4, 9, 5, 3, 2].

One approach to slicing concurrent programs is to include an interference dependence edge be-
tween every write to a variable x that might execute in one thread, and every read of x that might
execute in a parallel thread. However, this approach essentially assumes that all paths in the CFG
can be taken and that all possible interleavings of parallel threads are possible. The following ex-
ample illustrates how, in the absence of this assumption, some interference edges do not represent
possible “flow” of values:

y = 0
x = 0
cobegin {
// thread 1

print y
x = 1
print y

}{
// thread 2

if (x == 1)
y = 5

} coend

There are interference edges from “y = 5” in Thread 2 to the two “print y’s in Thread 1. However,
in fact there is no dependence from “y = 5” to the first “print y” because the assignment to y
only happens if x has been set to one, and that only happens after the first “print y.”

The open question is how to do a better job of identifying interference dependences in the CFG
derived from a Rose/RT specification.
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A UML-RT Model of the NRL Pump* 
 

GrammaTech 
317 N. Aurora Street 
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1. Introduction 
 
This document presents a brief overview of a executable design model of the NRL Pump[1, 2] using 
Rational Rose for RealTime (Rose RT). The NRL pump is a device used to control the flow of information 
between high and low security networks.  By controlled we mean that information is allowed to flow from 
the low security network to the high security network, but not from the high side to the low side.  The 
behavior of the NRL Pump was modeled after the Statemate design presented in [3].  Rose RT is a UML 
tool with extensions to support the modeling of real-time systems.  The extensions to Rose RT are based 
of Bran Selic’s ROOM methodology. 
 
The remainder of this report is divided into the three sections.  Section 2 describes the UML RealTime 
extensions in RoseRT.  Section 3 gives a brief overview of the major components of the NRL Pump. 
Section 4 describes differences between the Statemate model and the Rose RT model.  Appendix A 
contains the class diagram from the Rose RT model of the NRL Pump. 

2. UML Extensions in Rose RT  
 
Rose RT presents four new major modeling elements as extensions to UML: Capsules, Ports, Protocols, 
and Connectors.  A thorough description of these elements can be found in [4]. 
 
Capsules are the fundamental modeling element in Rose RT.  A capsule can be considered as the 
equivalent of a class that is also a light-weight thread. Message passing is the sole means of 
communication between capsules. Messages are sent and received through ports. Ports are objects 
whose purpose is to send and receive messages to and from capsule instances.  The messages that may 
be sent or received on a given port are restricted by the port’s protocol.  A Protocol is the set of 
messages exchanged between two objects. It is basically a contractual agreement defining the valid 
types of messages that can be exchanged between the participants in the protocol. As an option, a state 
machine may be used to specify the valid communication sequences for a protocol.  Capsules are linked 
together with connectors. A connector is used to connect the ports of two capsule instances.  The 
connector serves to link up partners in communication. 
 

3.  NRL Pump Overview  
 
Using [3] as a guide our model of the pump has five key capsules: NRLPump, Mediate_Hi_Unit, 
Mediate_Low_Unit, Relay_H_Trans, and Relay_L_Trans.  Each of these is briefly described below. 
 

                                                 
* This research was partially supported by the Defense Advanced Research Projects Agency under 
Contract F30602-00-C-0080 and by the Office of Naval Research under Contract N00014-99-C-0035. 
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• NRLPump:  This capsule models that NRL pump device.  There is no behavior modeled for this 
capsule, its behavior has been instead modeled in sub-capsules.  It consists of two key capsules 
Mediate_Hi_Unit and Mediate_Low_Unit, and another capsule to model a queue (the reasons for 
modeling the queue as a capsule are explained in section 4.   

• Mediate_Hi_Unit: The Mediate_Hi_Unit’s primary function is to control the rate of message flow from 
the queue to the high relay based on feedback from the high relay.  After each ACK is received, the 
mean ACK time is adjusted. 

• Mediate_Low_Unit: The Mediate_Low_Unit enqueues messages from the low relay if there is 
sufficient space in the buffer.  If no space is available, it sleeps until it is informed of a vacancy.  It 
also sends ACKs to the low relay unit exponentially delayed, with parameter equal to the mean ACK 
time from the Mediate_Hi_Unit. 

• Relay_L_Trans: Relay_L_Trans provides the low security interface to the pump.  It relays messages 
to the Mediate_Low_Unit and returns ACKs to the low security network when directed by the 
Mediate_Low_Unit. 

• Relay_H_Trans: Relay_H_Trans provides the high security interface to the pump.  It accepts 
messages from the Mediate_Hi_Unit and relays them to the high security network.  

 
 
 

4.  Key Differences Between Model Versions 
 
Using different modeling tools and methodologies results in minor differences in behaviors of the models.  
The two key sources of differences in the model are the differences in the definition of what can trigger a 
transition in a state machine and the fact that capsules can only communicate via message passing.  
 
In the Statemate version of the model transitions in the state machine are often triggered by the reading 
and writing of variables.  As all communication must be done by message passing, events based on 
another capsule reading a variable are obviously not allowed.  In fact all transition triggers are based on 
the reception of a message.  This forced us to build in explicit messages when reading and writing to 
variables was to have triggered a transition.  Most notable example of this is the pump’s buffer.  We 
modeled this as a separate capsule called Queue. The queue used in this pump model has three states: 
empty, full, and not empty or full.  The primary operation of the queue is to take messages from the low 
mediator and make them available to the high mediator. Items were added and removed from the queue 
by sending messages to the queue.  
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Appendix A 

 

Figure 1 NRL Pump Class Diagram 

33



Better Slicing of Programs with Jumps and Switches

Sumit Kumar1 and Susan Horwitz1,2

1University of Wisconsin
2GrammaTech, Inc.

Abstract

Program slicing is an important operation that
can be used as the basis for programming
tools that help programmers understand, de-
bug, maintain, and test their code. This pa-
per extends previous work on program slic-
ing by providing a new definition of “correct”
slices, by introducing a representation for C-
style switch statements, and by defining a new
way to compute control dependences and to
slice a program-dependence graph so as to com-
pute more precise slices of programs that in-
clude jumps and switches. Experimental re-
sults show that the new approach to slicing can
sometimes lead to a significant improvement in
slice precision.

1 Introduction

Program slicing, first introduced by Mark
Weiser in [11], is an important operation that
can be used as the basis for programming
tools that help programmers understand, de-
bug, maintain, and test their code. Slicing
was defined by Weiser as the solution to a
dataflow problem specified using the program’s
control-flow graph (CFG). Ottenstein and Ot-
tenstein [8] provided a more efficient algorithm
(reviewed below in Section 2.1) that uses the
program-dependence graph (PDG) [4].
This paper makes the following four contri-

butions in the area of program slicing:

Defining Correct Slices: Weiser defined a
correct slice of a program P to be a projection
of P with certain properties (see Section 3).
Podgurski and Clarke [9] defined a notion of
semantic dependence that can also be used as
the basis for a definition of a correct slice; how-
ever, their definition did not take jump state-
ments (goto, break, etc.) into account.
We give an example to illustrate a short-

coming of Weiser’s definition, and offer a new
definition, similar to the one for semantic de-
pendence, that overcomes the problem with
Wieser’s definition, and also makes sense for
programs with jump statements.

Language Extension: We discuss how to
represent C-style switch statements in the CFG
and the PDG. To our knowledge, this is the first
time switch statements have been discussed as
such, rather than assuming that they have been
implemented at a low level using gotos. Han-
dling switch statements is important because
many slicing applications involve displaying the
result of a slice to the programmer, or using
the results to create new source code. Thus,
for those applications, if a slice includes code
from a switch, it needs to be displayed / repre-
sented in the new code as a switch rather than
in some low-level form. Representing and slic-
ing a switch in a low-level form and then map-
ping the results back to the source level may
lead to a final result that is less precise than
the one produced by working on the switch di-
rectly.
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Improved Precision: Finding correct, mini-
mal slices is an undecidable problem, whether
correctness is defined according to Weiser,
Podgurski/Clarke, or using the new definition
proposed here. However, it is still a reason-
able goal to design a slicing algorithm that is
more precise than previous ones; i.e., to define
a new algorithm that is correct, and also pro-
duces smaller slices than previous algorithms.
In this spirit, we introduce some example

programs with jumps and switches for which
previous slicing algorithms produce slices that
include too many components. While the ex-
amples with jumps are somewhat artificial, the
examples with switches are motivated by code
from real programs. We show that the reason
“extra” components are included in the slices
has to do both with how control dependences
are defined, and how slices are computed. We
then give a new definition of control depen-
dence and a new slicing algorithm that is more
precise than previous algorithms in the pres-
ence of jumps and/or switches.

Experimental Results: While it is possible
to produce artificial examples in which our new
approach to slicing provides arbitrarily smaller
slices than previous approaches, it is important
to know how well it will work in practice. We
provide some experimental results that show
that while in most cases slice sizes are reduced
by no more than 5%, there are examples of re-
ductions of up to 35%.

2 Background

2.1 Slicing using the PDG

Informally, the slice of a program from state-
ment S is the set of program components that
might affect S, either by affecting the value of
some variable used at S, or by affecting whether
and how often S executes. More precise defi-
nitions have been proposed, and are discussed
below in Section 3.
Slicing was originally defined by Weiser [11]

as the solution to a dataflow problem spec-
ified using the program’s control-flow graph
(CFG). Ottenstein and Ottenstein [8] pro-
vided a more efficient algorithm that uses the

program-dependence graph (PDG) [4]:

Algorithm 1 (Ottensteins’ algorithm for
building and slicing the PDG)

Step 1: Build the program’s CFG, and use it
to compute data and control dependences:
Node N is data dependent on node M
iff M defines a variable x, N uses x, and
there is an x-definition-free path in the
CFG from M to N . Node N is con-
trol dependent on node M iff N post-
dominates one but not all of M ’s CFG
successors.1

Step 2: Build the PDG. The nodes of the
PDG are almost the same as the nodes of
the CFG: a special enter node, and a node
for each predicate and each statement in
the program; however, the PDG does not
include the CFG’s exit node. The edges
of the PDG represent the data and control
dependences computed using the CFG.

Step 3: To compute the slice from statement
(or predicate) S, start from the PDG node
that represents S and follow the data- and
control-dependence edges backwards in the
PDG. The components of the slice are all
of the nodes reached in this manner.

Example: Figure 1 shows a program that
computes the product of the numbers from 1
to 10, its CFG, and its PDG. The nodes in the
slice of the PDG from “print(k)” are shown
using bold font. (For the purposes of control-
dependence computation, an edge is added to
the CFG from the enter node to the exit node;
to avoid clutter, those edges are not shown in
the CFGs given in this paper).

2.2 Handling Jumps

Early slicing algorithms (including Weiser’s
and the Ottensteins’) assumed a structured
language with conditional statements and
loops, but no jump statements (such as goto,
break, continue, and return). Both [2]
and [3] pointed out that if a CFG is used in

1By definition, every CFG node postdominates it-
self. Thus, if a node M has CFG successors m1 and
m2, then unless m1 postdominates m2, m1 is control-
dependent on M (and similarly for m2).

35



print(prod)

enter

k = 1

k++

prod = 1

prod = prod*kprint(k)

while (k<=10)

exit

TF

print(prod)k = 1 print(k)

enter

(a) Example Program (b) CFG

(c) PDG

data 
dependence

control 
dependence

prod = 1

k++prod = prod*k

while (k<=10)

prod = 1;
k = 1;
while (k <= 10) {

prod = prod * k;
k++;

}
print(k);
print(prod);

Figure 1: Example program, its CFG, and its PDG. The PDG nodes in the slice from “print(k)”
are shown in bold.

which a jump statement is represented as a
node with just a single outgoing edge (to the
target of the jump), then no other node will
be control dependent on the jump, and thus it
will not be in the slice from any other node.
For example, Figure 2(a) shows a modified ver-
sion of the program from Figure 1, now in-
cluding a break statement. Figures 2(b) and
2(c) show the program’s CFG and the corre-
sponding PDG. Note that in this PDG, there
is no path from the break to “print(k)” or
to “print(prod)”, and therefore the break is
(erroneously) not included in the slices from
those two print statements even though the
presence of the break can affect the values that
are printed.
The solution proposed by [2] and [3] involves

using an augmented CFG, called the ACFG,
to build a dependence graph whose control-
dependence edges are different from those in
the PDG used by Algorithm 1. We will refer
to the new dependence graph as the APDG, to
distinguish it from the PDG.

Algorithm 2 (Building and Slicing the

APDG)

Step 1: Build the program’s ACFG. In the
ACFG, jump statements are treated as
pseudo-predicates. Each jump statement
is represented by a node with two outgoing
edges: the edge labeled true goes to the tar-
get of the jump, and the (non-executable)
edge labeled false goes to the node that
would follow the jump if it were replaced
by a no-op. Labels are treated as separate
statements; i.e., each label is represented
in the ACFG by a node with one outgoing
edge to the statement that it labels.

Step 2: Build the program’s APDG. Ignore
the non-executable ACFG edges when com-
puting data-dependence edges; do not
ignore them when computing control-
dependence edges. (This way, the nodes
that are executed only because a jump is
present, as well as those that are not ex-
ecuted but would be if the jump were re-
moved, are control dependent on the jump
node, and therefore the jump will be in-
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prod = 1;
k = 1;
while (k <= 10) {

prod = prod * k;
k++;

}
print(k);
print(prod); print(prod)

enter

k = 1

k++

prod = 1

prod = prod*k

print(k)

while (k<=10)

exit

TF

(a) Example Program (b) CFG

(c) PDG

if (MAXINT/k > prod) break;

if (MAXINT/k>prod)

break

T F

print(prod)k = 1 print(k)

enter

prod = 1

k++
prod = prod*k

while (k<=10)

if (MAXINT/k>prod)

break

Figure 2: Example program with a break statement, its CFG, and its PDG.

cluded in their slices.)

Step 3: To compute the slice from node S,
follow data- and control-dependence edges
backwards from S as in Algorithm 1. A la-
bel L is included in a slice iff a statement
“goto L” is in the slice.

Example: Figure 3 shows the ACFG for the
program in Figure 2(a), and the correspond-
ing APDG. (The non-executable false edge out
of the break in Figure 3(a) is shown using a
dotted arrow.) Note that in Figure 3(b), there
are control-dependence edges from the break to
“prod = prod * k” and to “k++”; therefore,
the break is (correctly) included in every slice
that includes one of those two nodes.

3 Semantic Foundations for
Slicing

In his seminal paper on program slicing [11],
Weiser defined a slice of a program P from
point S with respect to a set of variables V
to be any program P ′ such that:

• P ′ can be obtained from P by deleting zero
or more statements.

• Whenever P halts on input I, P ′ also halts
on input I, and the two programs produce
the same sequences of values for all vari-
ables in set V at point S if it is in the slice,
and otherwise at the nearest successor to
S that is in the slice.

One problem with this definition is that it
can be inconsistent with the intuitive idea that
the slice of a program from point S is the set of
program components that might affect S. For
example, Figure 4 shows a program, the slice
that a programmer would probably produce if
asked to slice the program from statement [6]
with respect to variable z, and another slice
that is correct according to Weiser’s definition,
but that does not match our intuition about
slicing. Furthermore, the requirement that a
slice be an executable program may be too re-
strictive in some contexts (e.g., when using slic-
ing to understand how a program works, or to
understand the effects of a proposed change).
In those cases, it might be more appropriate
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print(prod)

k = 1

prod = 1

prod = prod*k

print(k)

while (k<=10)

k++

if (MAXINT/k>prod)
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(b) Corresponding APDG

enterenter

k = 1

prod = 1

k++

prod = prod*k

while (k<=10)

exit

T
F

break

if (MAXINT/k>prod)

T
FT

Fprint(prod)

print(k)

(a) ACFG

Figure 3: ACFG and the corresponding APDG for the example with a break.

to define the slice of a program simply to be
a subset of the program’s components, rather
than an executable projection of the program.
Given these observations, we propose to de-

fine the slice of program P from component S
to be the components of P that might have a
semantic effect on S. But what does it mean
for a statement or predicate X to have a se-
mantic effect on another statement/predicate
S? To make that notion more precise, we con-
sider what happens when a new program P ′ is
created by modifying X or removing it from
program P as follows:

X is a normal predicate: P ′ is created by
replacing X with a different predicate
that uses the same set of variables as
X. (For example, in the program whose
ACFG is shown in Figure 3, the predicate
“MAXINT/k > prod” could be replaced by
any other predicate that uses only vari-
ables k and prod, such as: “k < prod”,
or “k != 0 && prod > 22”.)

X is a pseudo-predicate (a jump statement):
P ′ is created by removing statement X
from P .

X is a non-jump statement: P ′ is created
by replacing X with a different statement
that uses and defines the same sets of vari-
ables as X. (For example, in the program
whose ACFG is shown in Figure 3, the
statement “prod = prod*k” could be re-
placed by any other statement that uses
only variables prod and k, and that de-
fines variable prod, such as: “prod = k +
prod”, or “prod = prod-k-4”.)

Definition 0 (Semantic effect): X has a
semantic effect on S iff there is some pro-
gram P ′ created by modifying or removing X
from P as defined above, and some input I such
that:

• Both P and P ′ halt on I.

• The two programs produce a different se-
quence of values for some variable used at
S.

Note that the sequence of values produced for
a variable used at S can differ either because
the two sequences are of different lengths, or
because their kth values differ (for some k).
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Program Intuitive Slice Also Correct by Weiser’s Definition

[1] x = 2; [1] x = 2;
[2] y = 2; [2] y = 2;
[3] w = x * y;
[4] x = 1; [4] x = 1;
[5] y = 3; [5] y = 3;
[6] z = x + y; [6] z = x + y; [6] z = x + y;

Figure 4: Example illustrating a shortcoming of Weiser’s definitions of a correct slice.

Definition 0 is similar to the definition
of finitely demonstrable semantic dependence
given by Podgurski and Clarke in [9]. However,
that definition did not take jump statements
into account: according to their definition, no
program component is ever semantically depen-
dent on a jump; therefore, if a correct slice
from S is defined to include all components on
which S is semantically dependent, jump state-
ments will never be included in a slice. This is
clearly contrary to one’s intuition, and there-
fore is a shortcoming of the Podgurski/Clarke
definition.
As usual with any interesting property of a

program, determining which components have
a semantic effect on a given component S, ac-
cording to Definition 0, is an undecidable prob-
lem. Therefore, we must say that a (correct)
slice of program P from component S is any
superset of the components of P that have a
semantic effect on S.
Note that using Definition 0, statements [4]

and [5] in the example program in Figure 4
(but not statements [1] and [2]) have a se-
mantic effect on statement [6]. Therefore, a
correct slice from statement [6] must include
statements [4] and [5] (but not statements
[1] and [2]), which is consistent with our in-
tuition about that slice.

4 Representing Switch
Statements

Consider a C switch statement of the form:

switch (E) {

case e1: S1; break;
case e2: S2; break;
...

case en: Sn; break;
default: S;

}

Clearly, “switch(E)” should be represented
in the CFG (and the ACFG) using a (normal)
predicate node with n+ 1 outgoing edges: one
to each case including the default. If there
were no default, the n+ 1st edge should go
to the first statement following the switch (be-
cause in C, if the value of the switch expression
does not match any case label, and there is no
default then execution continues immediately
after the switch).
Now consider how to represent the case la-

bels. One’s initial intuition might be that they
are similar to other labels in a program (the
targets of goto statements). However, there
is an important difference: if a program in-
cludes “goto L1”, then label L1 must be in the
program, or it is not syntactically correct. If
there is no “goto L1”, then it doesn’t matter
whether label L1 is in the program: its presence
or absence has no semantic effect. However,
these observations are not true of a case label.
Removing a case label from a program never
causes a syntax error, but can have a seman-
tic effect. For example, if expression E in the
code given above evaluates to e2, then state-
ment S2 will execute. However, if “case e2” is
removed, then statement S2 will not execute;
instead, statement S will execute. Therefore,
it makes sense for “case e2” to be in the slice
from S2 as well as in the slice from S.
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This suggests that, like jumps, case labels
should be represented using pseudo-predicates
in the ACFG. The target of the outgoing true
edge from a case-label node should be the first
statement inside the case, and the target of
the outgoing false edge should be the node that
represents the default label if there is one, and
otherwise the first statement that follows the
switch (because if the case label is removed,
and the switch expression matches that value,
then execution proceeds with the first state-
ment after the switch). The target of the out-
going false edge from the default case should
always be the first statement that follows the
switch.
Example: Figure 5 shows the ACFG for the

switch statement given above (for n = 3).

exit

enter

break

S1

switch(E)

default

break

F

case e1

S

F

F

TS2

T

T

TF
F

T

S3

F

T
F

T break

case e2

case e3

Figure 5: ACFG for a switch statement.

5 Motivation for a New
Slicing Algorithm

Figure 6 gives three examples where Algo-
rithm 2 (see Section 2.2) produces slices that
include unwanted components. (In these ex-
amples, we assume that switch statements are
represented in the ACFG as discussed above in
Section 4.) The first column in Figure 6 gives
a code fragment, with one statement enclosed
in a box. The second column shows the ideal
slice from the boxed statement (according to
Definition 0 given above in Section 3). The
third column shows the slice computed using

Algorithm 2. The first two examples involve
switches, while the third example involves only
gotos.
Note that in the first example the slice from

S3 should include the break from the previ-
ous case, because the presence/absence of that
break affects whether or not S3 executes. In
particular, consider what happens when ex-
pression E evaluates to e2. If the break is not
in the program, S3 executes, while if the break
is in the program, S3 does not execute.
In the second example, the slice from S

should include neither “if (P)” nor “return”.
Whatever the value of predicate P, statement
S will not execute (because either the return
or the break prevents execution from “falling
through” from “case e1” to “case e2”). Sim-
ilarly, whether or not the return is in the pro-
gram makes no difference since it is followed by
the break (and thus S is always prevented from
executing).
In all three examples, extra components

are included in the slices computed using
Algorithm 2 because of a chain of control-
dependence edges. For instance, the APDG
for the second example includes the follow-
ing chain: case e1 → if (P) → return →
break → case e2 → S. Thus, since Algo-
rithm 2 follows all control-dependence edges
backwards, all of those components are in-
cluded in the slice from S2.
In this example, each individual control-

dependence edge represents a possible seman-
tic effect: “case e1” has a semantic effect
on “if (P)”, which has a semantic effect
on “return”, which has a semantic effect
on “break”, which has a semantic effect on
“case e2”, which has a semantic effect on S.
However, the backwards closure of the control-
dependence relation starting from S yields a su-
perset of the components that have a semantic
effect on S; i.e., the “semantic-effect” relation
is not transitive.
It is also possible to have an example in

which even an individual control dependence
(computed using the ACFG) does not reflect a
semantic effect, as illustrated in Figure 7. In

2Furthermore, the entire backward closure from
predicate P of the control- and data-dependence rela-
tions will be included in the slice computed by Algo-
rithm 2, making it arbitrarily larger than the ideal slice.
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Code Fragment Ideal Slice Slice computed using Algorithm 2

switch (E) { switch (E) { switch (E) {
case e1: S1; break; case e1: S1; break; case e1: S1; break;

case e2: S2; break; case e2: S2; break; case e2: S2; break;

case e3: S3; break; case e3: S3; break; case e3: S3; break;

} } }
switch (E) { switch (E) { switch (E) {

case e1: if (P) return; case e1: if (P) return; case e1: if (P) return;

break; break; break;

case e2: S; case e2: S; case e2: S;

} } }

if (P1) goto L1; if (P1) goto L1; if (P1) goto L1;

if (P2) goto L3; if (P2) goto L3; if (P2) goto L3;

goto L2; goto L2; goto L2;

L1: S; L1: S; L1: S;

L2: ... L2: ... L2: ...

L3: ... L3: ... L3: ...

Figure 6: Examples for which Algorithm 2 produces slices with extra components.

this example, the APDG includes a control-
dependence edge from “if (P)” to S1 because
S1 postdominates the true successor of the
if in the ACFG, but does not postdominate
its false successor (because the goto’s non-
executable false edge bypasses S1). However,
“if (P)” cannot in fact affect the execution of
S1; it always executes, regardless of whether P
evaluates to true or to false.
These examples motivate the need for a

new definition of control dependence to avoid
control-dependence edges like the one in Fig-
ure 7 that do not reflect a semantic effect.
They also motivate the need for a new way
to compute slices that does not involve taking
the transitive closure of the control-dependence
edges, since, as discussed above, the semantic-
effect relation is not transitive.

6 New Definition of
Control Dependence and
New Slicing Algorithm

Recall that the definition of control dependence
used in Algorithm 1 is as follows:

Definition 1 (Original control
dependence): Node N is control dependent
on node M iff N postdominates, in the CFG,
one but not all of M ’s CFG successors.

To permit control dependence on jumps, Al-
gorithm 2 replaces “CFG” with “ACFG” in the
definition of control dependence:

Definition 2 (Augmented control depen-
dence): Node N is control dependent on
node M iff N postdominates, in the ACFG, one
but not all of M ’s ACFG successors.

Unfortunately, as illustrated in Figure 7, Def-
inition 2 is too liberal; it can cause a spurious
control dependence of N on M due to the pres-
ence of an intervening pseudo-predicate. For
example, in the ACFG in Figure 7, node S1 fails
to postdominate the false successor of the if
only because of the non-executable edge from
“goto L1” to S2. Since the execution of S1 is
affected by the presence/absence of the goto it
should be considered to be control dependent
on the goto; however, (as noted previously), S1
will execute regardless of the value of predicate
P, and therefore it should not be considered to
be control dependent on the if. So in this case,

41



Example Code Corresponding APDG

F

enter

FT

T

exit

Corresponding ACFG

S2

S1

goto L

L:

enter

goto L

S2
if (P)

S1

if (P)

L:

if (P) {
L:   S1;

}

S2;

else goto L;

Figure 7: Example in which a control dependence does not reflect a semantic effect.

the actual influence of “goto L1” on statement
S1 causes an apparent (but spurious) influence
of “if (P)” on S1.
The solution to this dilemma is to re-

place only the second instance of “CFG” with
“ACFG” in Definition 1:

Definition 3 (Control dependence in the
presence of pseudo-predicates): Node N
is control-dependent on node M iff N post-
dominates, in the CFG, one but not all of M ’s
ACFG successors.

We will refer to a dependence graph that in-
cludes control-dependence edges computed us-
ing Definition 3 as a PPDG (pseudo-predicate
PDG) to distinguish them from the PDGs
whose control-dependence edges are computed
using Definition 1, and the APDGs whose
control-dependence edges are computed using
Definition 2.
Example: The program and ACFG from Fig-

ure 7 are given again in Figure 8, with the cor-
responding PPDG. Note that neither label L
nor statement S1 is control dependent on “if
(P)”.
Definition 3 addresses the problem of

control-dependence edges that do not reflect se-
mantic effects. The next problem that needs to
be addressed is the fact that even when every
control-dependence edge does represent a se-
mantic effect, the backward closure of control-

dependence edges from a node S may include
nodes that have no semantic effect on S. For
example, consider again the PPDG in Figure 8.
If the slice from node S1 includes all nodes
reached by following control-dependence edges
backwards, then “if (P)” will (erroneously)
be in the slice because of the chain of control-
dependence edges: if (P) → goto L → S1.
To address this problem, we need the follow-

ing definition:

Definition 4 (IPD): The immediate post
dominator (IPD) of a set of ACFG nodes is
the node that is the least-common ancestor of
that set of nodes in the CFG’s postdominator
tree.

Consider a (normal or pseudo) predicate P ,
with ACFG successors n1...nk, and let D =
IPD(n1...nk). Intuitively, P may affect the
execution of a program component S only if
there is a path in the CFG from one of P ’s
ACFG successors to S that does not include
node D. (If there is such a path, we say that
S is controlled by P .) The value of P (for
a normal predicate), or its presence/absence
(for a pseudo-predicate) determines which of
its ACFG successors is executed. The execu-
tion of the nodes along the paths from those
ACFG successors to D are also affected by the
value (or presence/absence) of P . However,
since whenever P is executed, execution will al-
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Example Code Corresponding PPDGCorresponding ACFG

F

enter

FT

T

exit

S2

S1

goto L

if (P)

L:

L:

enter

goto L

S2if (P)

S1

if (P) {
L:   S1;

}

S2;

else goto L;

Figure 8: Example from Figure 7 with the corresponding PPDG.

ways reach D (barring an infinite loop or other
abnormal termination), the execution of nodes
“beyond” D are not affected by P .
As discussed above, following control-

dependence edges backwards from S in the
PPDG can cause “extra” nodes to be included
in the slice from S. In terms of the “is con-
trolled by” relation, this is because there may
be a chain of control-dependence edges in the
PPDG from a predicate P to S, yet S is not
controlled by P . However, we have proved the
following Theorem:

Theorem: Node S is controlled by (normal or
pseudo) predicate P iff there is a chain of
control-dependence edges in the PPDG:

P → M1 → M2 → ... → Mk → S

such that everyMi in the chain is a normal
predicate node. (Note that there may also
be noMi’s at all; i.e., there may be a single
control-dependence edge P → S.)

The Theorem tells us that it is not necessary
to follow control-dependence edges back from a
pseudo-predicate; for any predicate P such that
there is a node S in the slice that is controlled
by P , P will be picked up by following chains
backwards only from normal predicates.
The new algorithm for building and slicing

the PPDG is given below.

Algorithm 3 (Building and slicing the
PPDG)

Step 1: Build the ACFG as described above
for Algorithm 2.

Step 2: Build the PPDG: Ignore the non-
executable ACFG edges when computing
data-dependence edges; compute control-
dependence edges according to Defini-
tion 3.

Step 3: To compute the slice from node S,
include S itself and all of its data-
and control-dependence predecessors in
the slice. Then follow backwards all
data-dependence edges, and all control-
dependence edges whose targets are not
pseudo-predicates; add each node reached
during this traversal to the slice. Include
label L in the slice iff a statement “goto
L” is in the slice.

Examples:

1. The slice of the program in Figure 8 com-
puted using Algorithm 3 would include the
nodes for S1, “goto L”, L, and the en-
ter node. It would not include the node
for “if (P)” because, since “goto L” is
a pseudo-predicate, its incoming control-
dependence edge would not be followed
back to the if node.
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2. Figure 9 shows the code, ACFG, and
PPDG for the second example in Figure 6.
Bold font is used to indicate the nodes
that would be in the slice from statement
S computed using Algorithm 3. Note that
“case e1”, “if (P)”, and “return” are
correctly omitted from the slice.

6.1 Complexity

The time required for Algorithm 3 includes the
time to build the PPDG and the time to com-
pute a slice. Like previous slicing algorithms
that use a dependence graph, the time for slic-
ing itself is extremely efficient, requiring only
time proportional to the size of the slice (the
number of nodes and edges in the sub-PPDG
that represents the slice).
The only difference in the time required to

build the PPDG as compared to the time re-
quired to build the APDG is for the com-
putation of control dependences. Computing
control dependences can be done for both the
APDG and the PPDG in time O(E+C), where
E is the number of edges in the ACFG and C is
the number of control-dependence edges. How-
ever, C may be different for the APDG and
PPDG. For example, in Figure 9, the PPDG
includes edges from “switch (E)” to “if (P)”
and to S that would not be in the correspond-
ing APDG. Figures 7 and 8 illustrate control-
dependence edges that are in the APDG but
not in the PPDG.

7 Interprocedural Slicing

The Ottensteins’ algorithm for intraprocedural
slicing using the PDG was extended to in-
terprocedural slicing using the System Depen-
dence Graph (SDG) in [6]. The approach is as
follows:

1. Use interprocedural dataflow analysis to
determine what non-local variables might
be used or modified by each procedure; for
each procedure and procedure call, add an
explicit input parameter for each variable
that might be used or modified, and an ex-
plicit output parameter for each variable
that might be modified.

2. Build the PDG for each procedure (includ-
ing nodes to represent calls, input parame-
ters, and output parameters), and connect
the PDGs with edges that represent pro-
cedure calls and parameter passing.

3. Compute and add summary edges to rep-
resent the (transitive) effects that each
procedure’s input parameters might have
on its output parameters. This is done
essentially by performing intraprocedural
slices from the nodes that represent the fi-
nal values of the output parameters (an
iterative process is used to account for re-
cursion).

4. To compute the slice from node S, use a
two-phase approach: Phase 1 follows edges
backwards from S, including the interpro-
cedural edges that represent calls made to
S, but not those that represent calls made
from S. Phase 2 starts from all nodes
reached during Phase 1, and follows edges
backwards again; this time including the
interprocedural edges that represent calls
made from S, and ignoring those that rep-
resent calls made to S.

Extending that algorithm for interprocedu-
ral slicing to be consistent with the approach
presented here is quite straightforward:

• The control-dependence edges in the
PDGs should be computed using Defini-
tion 3.

• When the summary edges are computed
via intraprocedural slicing, the slices
should not follow control-dependence
edges whose targets are pseudo-predicates.

• Similarly, when an interprocedural slice
is computed, the control-dependence
edges whose targets are pseudo-predicates
should be followed only if the target is the
source of the slice.

8 Experimental Results

To evaluate our work, we implemented Algo-
rithms 2 and 3, and used each of them to
compute slices in four C programs (informa-
tion about the programs, the number of slices
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Example Code Corresponding PPDGCorresponding ACFG

switch (E)

S

enter

case e1 case e2

if (P)

return break

switch (E)

S

enter

case e2

case e1 if (P)

return break

exit

T F

T

T

T
T

F

F

F

F

switch (E) {
case e1:

}

break;

return;
if (P)

case e2: S;

Figure 9: Example PPDG and its slice from S using Algorithm 3.

taken in each, and the average sizes of those
slices is given in the table in Figure 10). Slices
were taken from all of the nodes that could
be reached by following one control-dependence
edge forward from a node representing a switch
case, and then following five data-dependence
edges forward. This ensured that every slice
would include a switch, but (by starting further
along the chain of data dependences) avoided,
for example, slices that would include only
switch cases and breaks.

More details about the experimental results
are given in the tables in Figures 11 and 12.
Figure 11 presents information about the differ-
ences in the sizes of the individual slices taken
using the two algorithms. The first column
gives the number of cases where the two algo-
rithms produced slices of exactly the same size.
The other columns give the number of cases
where the slice produced by Algorithm 2 was
larger than the slice produced by Algorithm 3;
the second column gives the number of cases
where the size difference was between 1 and
10, the third column gives the number of cases
where the size difference was between 11 and
20, etc.

Figure 12 presents information about how
much the use of Algorithm 3 reduced the sizes
of the slices. The first column gives the number
of cases where there was no reduction in slice
size (a 0% reduction). The other columns give

the number of cases where the reduction in size
falls within the range specified by the previous
and current column headers. For example, the
second column gives the number of cases where
there was a size reduction greater than 0% and
less than or equal to 5%; the third column gives
the number of cases where there was a size re-
duction greater than 5% and less than or equal
to 10%.
Note that in almost all cases Algorithm 3 did

produce smaller slices than Algorithm 2. Al-
though this led to only a small reduction in the
total size of the slice in most cases, there were
some cases in both gcc.cpp and byacc where Al-
gorithm 3 provided reductions in slice sizes of
more than 15%, and some cases in flex where it
provided reductions in slice sizes of more than
30%.

9 Related Work

Choi-Ferrante: The paper by Choi and Fer-
rante [3] that presents Algorithm 2 also in-
cludes a second algorithm: Given a node S,
it starts with the slice from S computed us-
ing Algorithm 1, then adds goto statements to
the slice to form a program that will always
produce the same sequence of values for the
variables used at S as the original program.
This technique may produce smaller slices than
those produced using Algorithm 2. However,
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lines of number of number of Av. slice size
source APDG/PPDG slices (# of nodes)
code nodes Alg 2 Alg 3

gcc.cpp 4,079 16,784 1,932 11,693 11,670
byacc 6,626 21,239 468 2,119 2,110
CADP 12,930 35,965 499 7,921 7,905
flex 16,236 31,354 1,716 8,150 8,082

Figure 10: Information about the C programs used in the experiments.

0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90
gcc.cpp 2 0 48 1881 0 1 0 0 0 0
byacc 0 229 239 0 0 0 0 0 0 0
CADP 18 152 160 169 0 0 0 0 0 0
flex 0 0 5 127 48 41 8 79 1405 3

Figure 11: Differences in slice sizes using the two algorithms.

0% 5% 10% 15% 20% 25% 30% 35%
gcc.cpp 2 1918 3 1 8 0 0 0
byacc 0 438 18 7 5 0 0 0
CADP 18 481 0 0 0 0 0 0
flex 0 1572 0 5 13 52 66 8

Figure 12: Percent reduction in slice sizes achieved using Algorithm 3.
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the gotos that are added are not necessarily in
the original program; therefore, it satisfies nei-
ther Weiser’s definition of a correct slice, nor
Definition 0 from Section 3.

Agrawal: Agrawal [1] also gives an algorithm
that involves adding jump statements to the
slice computed using the standard PDG, but
the statements that he adds are from the origi-
nal program. He states that this algorithm pro-
duces the same results as Algorithm 2; however,
no proof is provided.

Harman-Danicic: More recently, Harman
and Danicic [5] have defined an extension
to Agrawal’s algorithm that produces smaller
slices by using a refined criterion for adding
jump statements (from the original program)
to the slice computed using Algorithm 1. When
applied to programs without switches, it may
or may not produce slices that satisfy Defini-
tion 0. This is because their algorithm includes
some nondeterminism: when there are cycle-
free paths from a predicate to its immediate-
postdominator both via its true and its false
branches, then the jump statements along ei-
ther of the paths can be chosen to be in the
slice.
Unfortunately, when applied to programs

with switch statements, this algorithm can be
as imprecise as Algorithm 2. For example,
when used to slice the switch statement in the
first example in Figure 6, it produces exactly
the same slice as Algorithm 2.
Another disadvantage of this algorithm as

compared to ours is that the worst-case time
to compute a slice can be quadratic in the size
of the CFG, while our algorithm is linear in the
size of the computed slice.

Sinha-Harrold-Rothermel: In [10], Sinha,
Harrold, and Rothermel discuss interprocedu-
ral slicing in the presence of arbitrary inter-
procedural control flow; e.g., statements (like
halt, setjmp-longjmp) that prevent proce-
dures from returning to their call sites. That
issue is orthogonal to the one addressed here
(better slicing of programs with jumps and
switches); thus, the two approaches can be
combined to handle programs with arbitrary
interprocedural control flow as well as jumps
and switches.

10 Summary

We have provided a new definition for a “cor-
rect” slice, a new definition for control depen-
dences, and a new slicing algorithm. The al-
gorithm has essentially the same complexity as
previous algorithms that compute slices using
program dependence graphs, and is more pre-
cise than previous algorithms when applied to
programs with jumps and switch statements.
The motivation for this work was the obser-

vation that slices of code with switch state-
ments computed using the approach to han-
dling jumps proposed by [2, 3] (as implemented
in the CodeSurfer [7] programming tool) often
include many extra components, which is con-
fusing to users of the tool. We expect that the
new approach will have an important practi-
cal benefit (to users of slicing tools) as well as
being an interesting theoretical advance.
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Abstract

Context-Free Process Systems (CFPSs) are a natural model for the control flow of imperative pro-
grams. In this paper we present a space efficient refinement to an algorithm of Burkart and Steffen for
model checking CFPSs over the full modal mu-calculus. Our algorithm works by generating a solution
environment containing compact but complete solution information for every state in the model. By gen-
erating more information than is strictly necessary to verify a formula we show how it is possible to explore
the space of examples in the model. We have implemented our approach as a plug-in for CodeSurfer, a
code exploration tool, and used it to check formulas over interprocedural control flow graphs for actual C
programs. The result is an interactive tool that for CTL formulas runs in time linear in the size of the
model and that can extract precise valid program paths demonstrating the validity or non-validity of any
part of the formula. For any mu-calculus formula the algorithm can be tuned to use as little as three bits
per model state of computation space on top of the space for the model itself, the solution environment,
and some additional space linear in the size of the formula.

1 Introduction

The fundamental component of any interactive tool designed to help explain the complexities of a piece of
code is the ability to give insightful answers to precise questions about the relationships that exist between
the program’s statements. Model checking, a proven practical tool for the automatic verification of complex
systems [6], is an ideal framework for such a tool. In this paper we present an extension to CodeSurfer® [1], a
GrammaTech product, in which questions about C programs are cast in the modal mu-calculus and answers are
derived by means of model checking over a context-free process system (CFPS), in our case the interprocedural
control flow graph of the program.

Our approach to model checking is an extension and space efficient refinement to the approach of Burkart,
Steffen, and Knoop [4, 5, 13]. Theirs is a higher-order approach that proceeds in two phases. First, property
transformers are computed, one for each state in the model. Intuitively the property transformers capture the
effect of a procedure on subformulas of the query over all possible contexts. They are used to express the set
of subformulas that are valid at a state in a procedure relative to the set of subformulas valid at the end of the
procedure. Finally, the model checking problem is decided by applying the property transformer of the start
state of the model to the set of subformulas that are valid at the terminal points of the model. Their approach
works over equation block systems [7], equivalent in expressiveness to formulas in the modal mu-calculus [14].

∗Supported by NSF grants EIA-9726388, ACI-9870687, EIA-9972853, and ACI-0085969.
†Funded by DARPA contracts F30602-00-C-0080: Dependence Graphs for Information Assurance of Systems (OASIS), and

DAAH01-01-C-R129: Verification of Hierarchical Graph Structures (SBIR).
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In this paper we show how the size of the property transformers can be reduced using a partially intensional
representation. Further we demonstrate how solution information for each state derived from the property
transformers can be used to generate semantically meaningful paths that illustrate the validity or non-validity
of any part of the formula. The result is a potentially powerful and practical interactive tool that software
engineers can use to understand programs.

The rest of this paper is organized as follows. Section 2 defines context-free process systems and section 3
introduces the equation block form of the modal mu-calculus our algorithm uses. Our model checking algorithm
is presented in section 4. Section 5 demonstrates how the the output of our algorithm can be used to generate
examples of a formula in the model. In section 6 we present some relevant implementation details as well as
discuss some experiences using our tool. Finally, in section 7 we contrast our work with some other approaches
and discuss directions for future work.

2 Context-Free Process Systems

Context-free process systems can be thought of as a generalization of interprocedural control flow graphs. These
systems form the models over which our algorithm operates. In this paper we will use process system and
control flow graph terminology interchangeably. The context-free process systems we present are essentially
the systems of Burkart and Steffen, however we do away with the terminology of state-classes which only has
relevance when considering an expansion of the system. We also couple actions to process labels on edges.
This coupling eliminates the requirement that processes be guarded by an initial action.

The equivalent of the the control flow graph for a single procedure is the procedure process graph.

Definition 1 A procedure process graph (PPG) is a quintuple G = 〈ΣP , T rans,→P , σstart
P , σend

P 〉, where:

� ΣP is a finite set of states (or CFG nodes)

� Trans =df Act∪N is a set of transformations where Act is a set of actions and N is a set of names

� →P =df →Act
P ∪ →N

P is the transition relation where →Act
P ⊆ ΣP × Act × ΣP and →N

P ⊆ ΣP × N ×
Act× ΣP

� σstart
P ∈ ΣP is a distinguished element, the start state

� σend
P ∈ ΣP is a distinguished element, the end state

For the remainder of the paper we use σ
a→P τ to denote 〈σ, a, τ〉 ∈→Act

P . Similarly we use σ
(N,a)→P τ for

〈σ,N, a, τ〉 ∈→N
P . In either case we refer to τ as an a-derivative of σ. The start state, σstart

P , is distinguished
by not being a derivative of any other state in the PPG. The end state, σend

P , is likewise distinguished by not
having any derivatives in the PPG.

To continue the control flow graph analogy, given σ
(N,a)→ τ ∈→N

P we refer to σ as a call-node and to τ as
a return-node. Elements of →N

P are referred to as call-edges.
The definition of a context-free process system follows naturally as a binding of processes to names over a

process set.

Definition 2 A context-free process system (CFPS) is a quadruple 〈N ,P , Act, P0〉, where

� N = {N0, . . . , Nn} is a set of names

� P =df {Ni = Pi|0 ≤ i ≤ n} is a finite set of PPG definitions where the Pi are finite PPGs with names
in N .

� Act =df

⋃n
i=0 ActPi is a set of actions

� P0 ∈ P is a distinguished PPG, the main PPG, whose name, N0, is not an element of any NPi .
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#include <stdio.h>

1. int G; 9. int fact(int n) { 17. void report() {

10. if(n!=1) { 18. printf("%d\n", G);

2. void main() { 11. int t = fact(n-1); 19. }

3. int p=0; 12. G = n*t;

4. scanf("%d",&p); 13. } else

5. if((p%2)==0) 14. G = 1;

6. fact(p); 15. return G;

7. report(); 16. }

8. }

Figure 1: sample.c

printf
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exit fact
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if (n!=1)

11 int t=call fact(n-1)

void main()

call scanf
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int p=03
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exit main

report

call report()7
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fact

if ((p%2)==0)5

void report()17

call printf("%d\n", G)18

exit report19

Figure 2: The context-free process system for sample.c

For the remainder of this paper the union of all PPG states, transitions, and call-edges in a CFPS will be
denoted by Σ, →, and →N respectively. Figure 1 is a sample C program that computes and prints a factorial
for positive even integer inputs, prints garbage for odd inputs, and diverges for non-positive inputs. Figure 2
is the corresponding context-free process system over a single implied action.

Semantically, a valid path in the model is a path in the complete expansion of the system. The complete

expansion is obtained by recursively substituting for each call edge, σ
(Ni,a)→ τ , the PPG associated with Ni.

An a-transition is introduced from σ to σstart
Pi

and τ is merged with σend
Pi

. For recursive programs the resulting
complete expansion is infinite. Notice that for all programs the set of valid paths in the CFPS representation
of their interprocedural control flow graph corresponds exactly to the set of potential execution paths in the
program.

Finally, we introduce a strictly technical condition that is useful when model checking formulas derived
from logics such as CTL. Let Σterm be the subset of Σ consisting of σend

P0
and every element of Σ with no

derivatives that is not σend
Pi

for any Pi. In the complete expansion we will consider every element of Σterm to
be a derivative of itself under every element of Act. This ensures that, when restricting to a single action as
we do for control flow graphs, every valid path can be infinitely extended.

The goal of the algorithm is then to declare a formula valid over a CFPS if and only if it is valid over
the complete expansion of the CFPS - a structure that may be interpreted as a traditional Kripke transition
system rooted at σstart

P0
[16]. In this way we can check the validity of temporal logic formulas with respect to

only valid paths without any change to the logics themselves.
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3 Equation Block Form of the Modal Mu-Calculus

The logic we use for posing questions in our system is the modal mu-calculus [14]. However, for technical
reasons, we recast formulas as block equational systems [7, 8] before model checking. The translation to
equational system form is a syntax directed process that operates over the parse tree of mu-calculus formulas
in positive normal form. The result is a system of equations, the RHS of each corresponding to a subformula
of the original mu-calculus formula. A designated variable, z0, corresponds to the entire formula. The size
of the equation system is always linear in the size of the formula. In this section we review the syntax and
semantics of equational systems.

Definition 3 Given V ar, a countable set of variables each capable of representing a set of states, AP , a set
of atomic propositions that is closed under negation, and Act, a set of actions (or modalities) a, simple basic
formula is an expression of the form

Φ ::= p | X1 | X1 ∨X2 | X1 ∧X2 | 〈a〉X1 | [a]X1

where p ∈ AP , Xi ∈ V ar for i ∈ {1, 2}, and a ∈ Act.

The semantics of the basic formulas is taken directly from their mu-calculus equivalents with one exception.
Variables are interpreted with respect to an external environment, Env, that maps each occurring element of
V ar to a subset of Σ, the states in a model.

Definition 4 An equation block has one of two types, min{E} or max{E}, where E is a list of mutually
(def-use) dependent equations,

〈X1 = Φ1, . . . , Xn = Φn〉
each Xi is a distinct element of V ar, and each Φi is a simple basic formula.

We define the weight of an equation block to be the number of modal-defined variables in the block and
we say that a variable, Xi is free in the block (or in a set of blocks) if it not the RHS of any equation in the
block.

Further, we say that a block is trivial if it has weight zero and that a set of blocks is homogeneous if every
non-trivial block is of the same type; a block set is heterogeneous otherwise.

Definition 5 A closed equational system is a list of equational blocks

B = 〈B1, . . . , Bm〉
in which the LHS of each equation is unique and in which no variable occurs free in B.

We say that an equational system is well-formed if there are no cyclic def-use dependencies among the vari-
able and junction-defined equations. Any mu-calculus formula can be translated into a well-formed equational
system. For the remainder to this paper we will deal only with well-formed systems.

Figure 3 gives a mu-calculus formula and its corresponding equational block form. The formula is the
mu-calculus translation of the CTL formula A[¬Use(G)U Def(G)] over a, the forward control flow modality.
Intuitively the atomic proposition Use(G) corresponds to the statements in which global program variable
G is used and Def(G) to the statements where G is defined. In English, the formula asserts that on all
computation paths, G is not used before it is defined and that it is eventually defined.

The translation to equation block form in figure 3 is not unique. It is permissible to switch the type of
any trivial block. Further, any equation block can be partitioned into two or more blocks of the same type
without changing the semantics. Likewise, any two blocks of the same type may be merged into a single block
of that type [15]. Note, however, that splitting and merging blocks may introduce mutual block dependencies
that make the interpretation more difficult to derive.

While we refer the reader to previous work [7] for the full precise semantics of equational systems, the
central idea is that the system is interpreted as an environment, Env, mapping each variable to a set of states.
Each block is interpreted as the portion of that environment restricted to the variables defined in it. The
block environments are constructed by taking a least or greatest fixpoint, depending on the block type, of
the equations in the block using the current approximation of the system’s environment for the block’s free
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min { z5 = ¬Use(G) } max { z6 = [a]z1 min { z7 = [a]z2

min { z3 = Def(G) } z4 = z5 ∧ z6 z2 = z3 ∨ z7 }
z1 = z3 ∨ z4 } min { z0 = z1 ∧ z2 }

νX.(Def(G) ∨ (¬Use(G) ∧ [a]X)) ∧ µY.(Def(G) ∨ [a]Y )

Figure 3: Mu-Calculus to Equation Block Translation

variables. The interpretation of the system is then the fixpoint reached by iterating over the blocks. The
original formula is then valid at σ ⇔ σ ∈ Env(z0).

That the environment for each block and for the equational system in general converges to such a fixpoint
is a consequence of the Knaster-Tarski fixpoint theorem [17]. The technique for generating an environment
for a single block over a CFPS is the subject of the next section.

4 Algorithm

Given a CFPS, G, and a well-formed equational system B, our algorithm returns an environment, Env(G,B),
binding to each variable of B the subset of ΣG at which the variable is valid. As a preprocessing step the
equation blocks are partitioned by their def-use relation into strongly connected components (SCCs) that
are then topologically sorted. The algorithm proceeds by processing the SCCs in order, adding the variables
defined in each SCC to Env(G,B). This ordering ensures that free variables of any SCC will already be
completely solved in Env(G,B) when the SCC is processed. In this way the iteration process is localized to the
SCC. Note that for hierarchical equational systems, as in figure 3, each SCC will be homogeneous and can
therefore be reduced to a single block.

The processing of an SCC proceeds by iterating over its component blocks to a fixpoint from an initial
approximation that assigns Σ to each variable defined in a max block and ∅ to each variable defined in a min
block. The one subtlety of the iteration is that each time a block in a heterogeneous SCC is processed it is
necessary to first reset the approximations of the variables defined in it to their initial approximations. For
homogeneous SCCs this reset can be shown to be unnecessary [9].

Before presenting the technique for processing a single block we make an observation: if B is well-formed
then for any σ ∈ Σ the validity of any variable in B can be derived from the validity of the atomic and modal-
defined variables at σ. This follows immediately from the definition of a well-formed equational system. We
will make use of this observation by restricting our property transformers to the modal-defined variables of a
block.

The processing of an individual block is a three step process that follows Burkart and Steffen’s original
work [4] with modifications to incorporate access to free variables (which they omitted) and our partially
intensional representation of the property transformers that makes use of our previous observation.

Let X = {X1, . . . , Xr} be the set of modal-defined variables in the block being processed, with {X1 =
Φ1, . . . , Xr = Φr} the set of modal equations in the block. Further, let

PTinit =
{

PTnull = λM . ∅ if the block is a min block
PTuniv = λM .X if the block is a max block

1. Construction of Property Transformers We associate with each state in the model a property transformer
(function) from the set of modal-defined variables in the block to itself. Intuitively, if PTσ is the property
transformer associated with a state σ and M is the set of modal-defined variables in the block that are
valid at the unique end node of the PPG containing σ then PTσ(M) is the set of modal-defined variables
that are valid at σ. Initializing each PTσ to PTinit we iterate via worklist to the least or greatest fixpoint
of the equations:
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PTσ =




PTinit if σ ∈ Σterm

PTid = λM .M if σ is an exit state for some PPG Pi, i �= 0
�j=1,...,n{∆(σ

a→σj)
◦ PTσj} over all otherwise

{σj | 1 ≤  ≤ n} derivatives of σ

where

∆
(σ

a→σj)
=

{
δ a→σstart

Pi

◦ PTσstart
Pi

if σ a→ σj is a call-edge to Pi

δ a→σj
otherwise

Let M ⊆ X and δ a→σj
(M) = M ′ then

Xi ∈ M ′ iff




Φi = 〈a〉Xj and Xj ∈ Expand(M,σj)
Φi = [a]Xj and Xj ∈ Expand(M,σj)
Φi = [b]Xj and a �= b

Where Expand(M,σj) is the union of the free variables of the block that hold at σj in the current
environment and the set of variables defined in the block that hold at σj under the assumptions M and
the values of the atomic propositions at σj .
Finally, let M ⊆ X and (�j=1,...,k{Fj})(M) = M ′ then

Xi ∈ M ′ iff
{

Φi = 〈a〉X ′ and there exists j ∈ {1 . . . k} with X ′ ∈ Fj(M)
Φi = [a]X ′ and X ′ ∈ Fj(M) for all j ∈ {1 . . . k}

The � operation over a set of functions Fi can be thought of as a mixed confluence operation that returns
a function equal to the meet of the Fi restricted to the ✷-defined variables and to the join of the Fi

restricted to the ✸-defined variables.

2. Solving for End and Return Nodes Since the property transformers give the set of modal-defined variables
valid at a state in terms of the modal-defined variables valid at the end state of the enclosing PPG, it
is necessary to determine the set of modal-defined variables valid at the end state of each PPG. For
recursive programs this requires an additional fixpoint iteration over the set of end and return states in
the model. Using the obvious block-type dependent initial approximation again, we determine solutions
for each return and end state according to the following equations:

Mσend
P0

= PTinit

If Mσend
Pk

= M ′, k �= 0 and Xi = Φi for all i ∈ {1, . . . , r} then

Xi ∈ M ′ iff
{

Φi = 〈a〉Xj and Xj ∈ Mσj for some σj a return node of a call to Pk in some PPG.
Φi = [a]Xj and Xj ∈ σj for all σj return nodes of calls to Pk in some PPG.

For each σreturn �∈ Σterm

Mσreturn = PTσreturn(Mσend
Pj

) where Pj is the PPG containing σreturn

3. Solving for the Remaining States
For each state σ in PPG Pi, Mσ = PTσ(M end

Pi
). Since PTσ was derived in step 1 and M end

Pi
was derived

in step 2 this is a straightforward function application.

In practice, since the property transformers depend upon the free variables of the block and since these
are likely to change substantially with each iteration over an SCC, we discard the PTs after each iteration
and retain only the results of step 3, which become part of Env(G,B).

The correctness of this algorithm follows from the well-formedness of B and the proof of Burkart and
Steffen [4]. While the complexity is exponential in both the maximal block weight and the alternation depth,
both of these factors can be controlled in practice. For CTL, where the formula can always be translated into
a hierarchical system with maximal block weight one, the algorithm is linear. Techniques for controlling the
general complexity are covered in section 6.
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5 Example Generation

In this section we demonstrate how the environment produced by our algorithm can be used to generate
semantically meaningful examples that justify the answer to a model checking query. For this section we
consider an environment, Env(G,B) to be the valid subset of Σ× V where Σ is the set of states in a CFPS G
and V is the set of variables defined in an equational system B.

The goal of example generation is to derive partial or full valid paths in the model that illustrate why a
particular variable, state pair is or is not in the environment. This is done by searching an implicit environment
dependence graph.

Definition 6 The environment dependence graph KEnv for an environment Env(G,B) over Σ and V is
a directed graph whose nodes are the elements of Env(G,B) and for which there is a possibly labeled edge

(σ, vi) → (τ, vj) iff




vi = vj and σ = τ
vi = y ∧ z or y ∨ z and (vj = y or vj = z) and σ = τ

vi = [a]vj or 〈a〉vj and σ
a→ τ ∈→Act

Pi
for some PPG Pi ∈ G

or ∃ω ∈ Σ with σ
(Pi,a)→ ω ∈→N and τ = σstart

Pi
(labeled push ω)

or ∃ω ∈ Σ with ω
(Pi,a)→ τ ∈→N and σ = σend

Pi
(labeled pop τ)

When generating examples we will be walking KEnv and when generating counter-examples we will be
walking the complementary graph KEnvC .

Definition 7 We define a walk W in an environment dependence graph K as a sequence of pairs 〈(σ, v), S〉
where (σ, v) is a vertex in K and S is a stack containing edge labels. Intuitively, a walk in K is a path in which
the edge labels act on the stack in the expected way and in which a “pop σ” labeled edge can be traversed only
if σ is the current top of stack or if the current stack is empty, denoted ⊥. The pop action is defined to have
no effect on an empty stack.

A terminal walk WT is a finite walk W = 〈(a0, S0), . . . , (an, Sn)〉 in which either there are no valid
transitions out of (an, Sn) or in which (an, Sn) forms a loop in W . A loop is formed in W when there
exists an i ∈ {0, . . . , n} such that ai = an and Si is a prefix of Sn. Loops capture the notion of infinite looping
or recursion in a program. It is easy to show that are no infinite non-terminating walks in K.

Examples can then be defined as a subset of the terminal walks of K.

Definition 8 An example of (σ0, v0) in K is a terminal walk WT = 〈((σ0, v0), S0 = {⊥}), . . . , ((σn, vn), Sn)〉
in which one of the following four conditions hold

1. σn = σend
P0

2. ((σn, vn), Sn) forms a loop in WT and either vn is defined in a max block of B and is valid at σn

(example) or vn is defined in a min block of B and is not valid at σn (counter-example)

3. WT is not a loop and either vn is a ✷-defined variable in B and vn is valid at σn (example) or vn is a
✸-defined variable in B and vn is not valid at σn (counter-example)

4. WT is not a loop, vn is an atomic-defined variable in B, and either vn is valid at σn and vm is valid at
σn under the assumption that every modal-defined variable B is invalid at σn (example) or vn is invalid
at σn and vm is invalid at σn under the assumption that every modal-defined variable in B is valid at σn

(counter-example) where m is the smallest m such that for all i ∈ {m. . . n} σi = σn

Intuitively, the final condition checks whether the values of the atomic propositions at the final state
are sufficient to cause the result. For valid CTL formulas over control flow graphs, examples correspond to
execution paths whose infinite extension is valid with respect to a top-level path formula (a formula to the
right of a top-level path quantifier).

An example path is the sequence of state transitions of an example. Figure 5 in appendix A illustrates
what the user sees in response to the example query of figure 3.
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Push 12< (6, z2), [7] >

Figure 4: A Counter-Example in the Environment Dependence Graph

Figure 4 shows the counter-example path in the environment dependence graph for the example. The
example satisfies condition 2 of our definition and can be reduced to an example path corresponding to an
infinite recursive computation in which G is never defined. This path is realized by non-positive even inputs.
Note that the terminal walk denoted by the dashed arrow in the figure is not an example since it fails to satisfy
condition 4 of the definition - under the assumption that z7 is valid at state 3, z2 = z3 ∨ z7 is valid at state 3
even though z3 = Def(G) is not.

6 Practical Considerations

Using CodeSurfer’s built-in Scheme interpreter we have implemented a working prototype of both the model
checking algorithm and the example generator. Our implementation works over interprocedural control flow
graphs generated from C programs by CodeSurfer. As mentioned before, these graphs can be considered as
CFPSs over a single action. These models are sufficient to handle the full C programming language provided
we treat longjmp statements as simple function calls. Calls to library functions can either be bypassed or
included in the model at the user’s discretion.

Using these models and translations from high level temporal logics such as FCTL [10] we have produced
a highly interactive tool in which a user can pose questions from an extensive predefined list of atomic propo-
sitions and then explore the space of examples using a graphical exploration tool built using the CodeSurfer
API. In theory, atomic propositions can refer to any static property of program statements. This includes not
only syntactic properties such as defined and used variables but also derived properties as well. For example,
if the variable G in figure 1 had been passed to fact(n) by reference rather than as a global variable we
could have used alias information for fact(n) to define nearly equivalent atomic propositions. CodeSurfer has
built-in support for a wide range of such analyses.

In the remainder of this section we touch upon some of the implementation choices that we have made to
improve the efficiency of our approach and discuss directions for future work.

6.1 The Model Checking Algorithm

As mentioned before, the model checking algorithm runs in time exponential in both the alternation depth of
the formula and the maximal block weight of the system. The space required for the PTs is also exponential
in the maximal block weight. In practice, however, alternation depths greater than two rarely occur. (CTL∗,
which contains both FCTL and LTL, is a strict subset of Lµ2.) By using block splitting to trade off time
for space the maximal block weight can be bounded by any constant the user defines. When this constant is
set to one, the result is PTs that can each be explicitly represented in two bits. Adding one bit per state to
denote inclusion in the worklist, the space overhead for the computation can grow at as little as three bits per
state in the model.
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For the environment we use a compact partially intensional representation. For atomic-defined variables
the environment stores a closure representing the atomic proposition. Thus, for syntactic properties, the set
of states associated with an atomic proposition is neither explicitly computed nor stored. For modal-defined
variables, however, we are forced to store the actual sets. For every other variable type (junction and variable-
defined) we store a closure that recursively computes its validity at a state by querying the validity of the RHS
variables in the definition at the state. Thus, the set of states associated with these variables is represented
completely intensionally. For CTL formulas over syntactic properties, such as in figure 3, the space required
for the solution environment is one bit per state per modal-defined variable plus some additional space linear
in the size of the formula for the intensionally represented variables.

6.2 The Example Generator

By default the example generator works by a modified depth first search in which we mark state, variable,
stack triples instead of just vertices. This marking strategy allows us to explore through functions called from
different contexts without backtracking. In theory, the number of example paths can be exponential in the
size of the model. In practice, we generate a single example and then allow the user to redirect it from any
intermediate point. In this way, the example can be “bent” toward any point of interest to the programmer.

Further, we use a hash table to store the state, variable, stack triples of the path currently being explored.
When a new state, variable, stack triple is generated we can access the set of stacks associated with that state,
variable pair in nearly constant time . We then only need to compare the elements with the new stack to
check for loops. The eliminates a potentially cubic bottleneck in exploring a path.

6.3 Conclusions and Future Work

Our implementation is still in the prototype stages and presenting detailed performance data would be pre-
mature. Based on the success of the prototype, we are rewriting some of the algorithm’s key elements in C.
Our knowledge of the performance that can be gained by vigorous optimization leads us to believe that this
will be a practical tool for software analysis.

The primary weakness of our present approach is that control flow graphs specifically, and single-entry,
single-exit PPGs in general, are inadequate for talking about the flow of data, particularly passed parameters,
in a program. One of CodeSurfer’s original applications was program slicing based on system dependence
graphs [12]. As such, CodeSurfer generates a wide range of data and control dependence information that we
presently only utilize in trivial ways. This variety of relations between program statements was our motivation
for choosing transition systems rather than state machines as our underlying model. One of the ways in which
we plan to address this inadequacy is by extending our approach to CFPSs based on multi-entry, multi-exit
PPG’s. These generalize the system dependence graph in the same way that the current CFPSs generalize
the interprocedural control flow graph.

We feel that the strength of our approach comes from having available both the range of information
CodeSurfer presently provides and the ability to generate a solution environment that distills that information.

7 Related Work

As previously mentioned, our approach to model checking is an extension of the work of Burkart, Steffen and
Knoop [4, 5, 13]. Knoop showed how their approach could be modified so that only the PTs required to check
a specific query are computed. Since our goal is to compute a complete set of solutions, this optimization has
little application in our work.

Bebop [2], a product of the SLAM project at Microsoft Research, is another practical, and at this point
more fully developed, approach to model checking C programs. Their approach operates over a Boolean
program abstraction that captures control dependence as well as data dependence information we currently
do not utilize. The abstraction they use is equivalent in power to a push-down automata.

VeriSoft [11], a product of Bell Laboratories and Lucent Technologies, is a verification tool for semantically
exploring the state space of systems composed of concurrent processes executing C code. It operates via a
state-less search using partial-order methods. At present we make no effort to deal with concurrent programs.
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Unrestricted hierarchical state machines (UHSMs) [18, 3] are an alternate model for capturing the notion of
context. They are similar to CFPSs but without the labeling of transitions in the system. While these models
are more amenable to automata [18] and reachability [3] based approaches to context-free model checking
(which for some temporal logics are faster than our approach), the models themselves are less natural for
representing the interplay between dependency types in a program. Specifically, they cannot readily be used
to check mu-calculus formulas over multiple modalities, such as those derived from PDL.
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A CodeSurfer GUI Screenshot

Figure 5: A screenshot of the model checker GUI illustrating the counter-example path of figure 4.
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WISE’01: PROCEEDING OF THE FIRST WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING, PARIS, JULY, 2001 1

Software Inspection Using CodeSurfer
Paul Anderson, Tim Teitelbaum

I. Introduction

Software Inspection is a technique for detecting flaws in
software before deployment. It was introduced by Fagan
in 1976 [12], and since then its use has spread widely.
Despite the widespread adoption and success of software

inspection, many software products continue to be released
with large numbers of flaws. This can partly be attributed
to the inherent complexity of software systems. The com-
plexity of the software thwarts manual attempts to com-
prehend it.
Furthermore, the ideal situation for conducting software

inspections in the field may often not be feasible. Time, ge-
ographical, or other constraints may mean that the original
author of the code is not available to explain the structure
of the code or describe its intended properties. Documenta-
tion may be misleading or even missing. General-purpose
program understanding tools are crucial if code is to be
inspected efficiently. However such tools until now have
mostly operated on the surface-level syntactic features of
the code.
Yet another difficulty is raised by the fact that safety or

secuiry requirements of software may be extremely difficult
to show using manual techniques. For example, regulatory
authorities that specify standards for safety-critical pro-
grams such as the Federal Aviation Authority (FAA) or
the Nuclear Regulatory Commision (NRC) sometimes re-
quire that programs involved in the control of components
have specific properties such as “part A must be indepen-
dent of part B”. It is a difficult and error-prone process for
a human to determine whether these properties hold for a
program.
We believe that tools that allow reasoning about the deep

structure of the code at a high level of detail will be ex-
tremely useful for doing software inspections. In this paper
we describe how our own system—CodeSurfer1—provides
access to and queries on the system-dependence graph rep-
resentation of a program for the purposes of helping with
software inspections.

GrammaTech, Inc., 317 N. Aurora St., Ithaca NY 14850.
{paul,tt}@grammatech.com

Partially supported by DARPA contracts F30602-00-0080: De-
pendence Graphs for Information Assurance of Systems (OASIS),
DAAH01-99-C-R192: Multi-Lingual Dependence-Graph Components
for Software and Hardware Analysis, Design, and Specialization, and
DAAH01-01-C-R129: Verification of Hierarchical Graph Structures
(SBIR)

1CodeSurfer is a registered trademark of GrammaTech, Inc.

The remainder of the paper is structured as follows. Sec-
tion II presents some basic material on dependence graphs.
Section III describes CodeSurfer—our system for program
understanding. Section IV describes how queries on the
system dependence dependence graph can be used for soft-
ware inspection. Section V describes using model checking
techniques on the control-flow graph to reveal underlying
flaws in the software. Section VI describes the ways in
which CodeSurfer has been designed to be open and exten-
sible. Section VII shows how this work relates to other work
in software inspection. Finally, Section VIII concludes with
a brief description of future work planned.

II. Dependence Graphs

Dependence graphs have applications in a wide range of
activities, including parallelization [4], optimization [13],
reverse engineering, program testing [2], and software ass-
urance [17].
Figure 1 shows the dependence graph representation for

a simple program with two procedures.
A Program Dependence Graph (PDG) [13] is a direct-

ed graph for a single procedure in a program. The ver-
tices of the graph represent constructs such as expressions,
call sites, parameters, and predicates. The edges between
the vertices indicate either a data dependence or a con-
trol dependence. The data dependence edges are essen-
tially data flow edges. For example, in Figure 1, there is
a data dependence between the point i=1 and the point
while (i < 11) indicating that the value of i flows be-
tween those two points.
A control dependence edge between a source vertex and

a destination vertex indicates that the result of executing
the source vertex controls whether or not the destination
vertex is reached. For example, in Figure 1, there is a
control-dependence edge between the vertex representing
the point while (i < 11) and the call site to the function
add.
A System Dependence Graph (SDG) is a directed graph

consisting of interconnected PDGs [18], one per procedure
in the program. Interprocedural control-dependence edges
connect procedure call sites to the entry points of the called
procedure. Interprocedural data-dependence edges repre-
sent the flow of data between actual parameters and formal
parameters (and return values).
Non-local variables such as globals, file statics, and vari-

ables accessed indirectly through pointers are handled by
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void main()
{

int sum, i;
sum = 0;
i = 1;
while (i<11) {
sum = add(sum, i);
i = add(i, 1);

}
print(sum);
print(i);

}

int add(int a, int
b)
{

return(a+b);
}

Fig. 1. The System Dependence Graph for the small program shown on the right. Each function is represented as a collection of program
points (shown in ovals) connected by edges (shown as arrows). There are different kinds of program points, e.g., entry, call-site, etc.

modelling the program as if it used only local variables.
Each non-local variable used in a function, either directly
or indirectly, is treated as a “hidden” input parameter, and
thus gives rise to additional program points. These serve as
the function’s local working copy of the non-local variable.

The PDG/SDG-based representation subsumes the no-
tion of call graphs and data flow graphs. Numerous addi-
tional intermediate program representations are generated
in the course of constructing a high-precision SDG for a
program. These include the following:

• The program’s Abstract Syntax Tree (AST), with symbol
table and full type information.
• The Control-Flow Graphs (CFG) and post-dominance
graph.
• The Points-to Graph. This is a directed graph with ver-
tices corresponding to variables (and structure fields, array
elements and procedures), and edges indicating what val-
ues can point to which locations [22]. The pointer analysis
algorithms used are those of Andersen [1], Steensgaard [35]
and Das [8].
• Variable def/use information. The set of all variables
whose values are taken or modified at all points in the
program.
• The Call Multi-Graph. This includes calls made indi-
rectly through function pointers variables.
• PDGs in which references to non-local variables of a pro-
cedure are modeled by turning such variables into extra
(hidden) parameters.

A. Dependence Graph Queries

A number of queries on the dependence graphs are de-
fined. The backward slice from a program point P includes
all points that may influence whether control reaches P ,
and all points that may influence the values of the vari-
ables used at P when control gets there. The forward slice
from P includes all program points affected by the compu-
tation or conditional test at P [37].
A program chop between a set of source program points

S and a set of target program points T reveals how S can
affect the state of the program at T [30].
These query algorithms can not be implemented using

simple graph reachability — they must only return results
that correspond to feasible executions of the program. A
path that enters a procedure through a call site can on-
ly exit the procedure by going back to the call site from
whence it came. We refer to queries on the dependence
graph as being precise interprocedural if they follow this
regime.
Precise interprocedural queries are implemented in

CodeSurfer using context-free language reachability [29].
In order to do context-free language reachability on a

graph, the edges in the graph are labelled with symbols. A
valid path is one where the labels on the edges spell out a
sentence in a context-free grammar.
It is a simple matter to construct a context-free grammar

that models the call-return paths that correspond to the
valid execution of a program. Let each call site in the
program be given a unique index ranging from 1 through
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N .
Let each interprocedural edge leaving from call site i be

labelled (i, and each interprocedural edge returning to call
site i be labelled )i. Let all other edges be labelled x.
The grammar that gives rise to a precise interprocedural

path in the SDG is one where the parentheses are matched.
The following grammar specifies paths that are completely
balanced by calls and returns:

matched → matched matched
| (i matched )i 1 <= i <= N
| x
| ε

A grammar that can be used to compute a slice can be
written as follows:

realizable → matched realizable
| (i realizable 1 <= i <= N
| ε

Note that the starting point for a slice can be in a proce-
dure F called by a procedure G. The grammar given above
allows the path to proceed into F without having to return
back to G.
Context-free language reachability is O(n3) in the num-

ber of edges in the graph. However, a preprocessing step
computes summary edges that summarize the transitive de-
pendence at call sites. This step, although also O(n3) in
the number of edges allows precise interprocedural queries
to be computed later in linear time [19].
Note that unstructured inter-procedural control flow

(such as that induced by throwing exceptions) can be mod-
eled this way as described in [34].

III. CodeSurfer

CodeSurfer is a static analysis tool designed to
support advanced program understanding based on
the dependence-graph representation of a program.
CodeSurfer is thus named because it allows surfing of pro-
grams akin to surfing the world-wide web.
CodeSurfer computes all of the above intermediate form-

s, and the entire system dependence graph for a program
in advance. The dependence-graph queries discussed above
are all implemented as primitive operations on the graph.
All CodeSurfer operations operate by accessing these data
structures directly, or by invoking the built-in dependence
graph queries.
A number of viewers allow the user to access this in-

formation in a user-friendly manner. These viewers are
connected by hypertext links. Some of the viewers are de-
scribed below.

Fig. 2. A Project Viewer for a small program. This shows how
CodeSurfer organizes the target code in terms of its program points.

• The Project Viewer shows the program organized hierar-
chically by file, then by function. Figure 2 shows a screen
shot of the CodeSurfer project viewer.
• The File Viewer displays the source file. Tokens that
give rise to vertices in the dependence graph are hypertext
links in the file viewer. Figure 4 shows a file viewer for a
small program.
• The Call Graph Viewer shows the call graph for the pro-
gram. In this view, the edges are hyperlinks to all the call
sites.
• Property Sheets are available for most program elements.
For example, the property sheet for a variable will show
where the variable occurs, where its value is used, where
its value is assigned, where it may point to, and what other
variables may point to it. Figure 3 shows a property sheet
for a variable.
• The Finder allows searching through the program for oc-
currences of strings, or for particular functions or variables.
For variables, the user can request declarations, occur-
rences, uses, and assignments. Attention can be restricted
to globals, file statics, function statics, formal parameter-
s, and/or locals. All variables that point to, or that are
pointed to by, a given variable can be shown.
• The Set Calculator allows direct manipulation of the sets
of points in the program. It provides a palette of logical set
operations including as union, intersection and difference.

CodeSurfer provides a number of queries on the system
dependence graphs that can be used for program under-
standing, or for finding flaws in the program. The next
two sections describe these queries.
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Fig. 3. A Property Sheet for a variable in the program. Most items
shown are themselves hypertext links to other viewers. For example,
selecting one of the Uses entries will navigate to a File Viewer and
position it at that point.

IV. Queries for Software Inspection

Many of the features of CodeSurfer have been designed
for program understanding, and as such are useful for de-
tailed software inspection. This section describes some of
the queries and their application to software inspection.

A. Variable Usage Information

Each point in the program may access some variables or
modify some variables, each possibly through pointers. In
order to compute the data dependence graph, the set of
variables used and defined at each program point are first
computed and associated with the vertex that represents
that program point.
This information is easily accessed by the user. For ex-

ample, in Figure 3 shows the property sheet for the variable
named english. The Defs: section of the property sheet
indicates that the variable is only assigned to in one place—
the expression english = 0. The Uses: part shows that
the value of the variable has its value taken at two points,
and that both of them are through a pointer.
Furthermore, the set of variables that can be used and/or

modified for each procedure, either directly or transitively
through a callee, is also computed. This can be used to
answer questions of the form “Can global variable G be
modified if function F is called”. The user can view this
information directly through the Project Viewer.

Fig. 4. A File Viewer for a small program. In this example, the
user has selected the first parameter to the first call to the procedure
say, and has invoked a forward slice query. All points that depend
on this parameter are shown in red

B. Predecessors/Successors

It is natural for a user attempting to understand a pro-
gram to ask “How could variable x have gotten its value
here?”, or alternatively “Where is the value generated at
this point used?”. The predecessor and successor opera-
tions provide the answer to these questions. These queries
can be posed for the control dependences, the data depen-
dences, or both. A program point’s data predecessors are
the points where the variables used at that point may have
gotten their values. The data successors are the points
where the variables that were modified at that point are
used.
The predecessors and successors queries are implemented

using the context-free language reachability algorithm on
the dependence graph as described above in Section II-A.
The fact that the query is done directly on the depen-

dence graph guarantees that the result will be correct with
respect to the data flow properties of the program. For ex-
ample consider the example in figure 5. If the predecessors
query is invoked from line 5, lines 3 and 4 will be in the
result. Line 1 will not be in the result because the value
of x assigned on line 1 can never reach the use of x on line
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5, because there is an assignment that kills it on line 3.
Similarly the assignment to w on line 2 can never reach line
5 because of the kill on line 4.

1: x = 100;
2: w = x;
3: x = 1;
4: w = 10;
5: z = x + w;

Fig. 5. A simple program fragment used to illustrate the built-in
queries. The underlining indicates the starting point for the queries
discussed in the text.

The fact that the the query is done using context-free
language reachability guarantees that paths that do not
correspond to valid paths through the program are not con-
sidered.
There are variants on these queries to narrow down the

set of starting points for a query. Point mode is the default
mode. As described above, a point mode query from line
5 yields lines 3 and 4.

Point-and-variable mode allows the user to restrict the
set of starting points to those involving a set of variables.
When invoked the user is prompted for the set of variables
to be considered. For example, a point-and- variable mod-
e predecessors query starting at line 5 in Figure 5 with
respect to variable x yields line 3.
In variable mode the input is a set of variables and is

independent of a starting point. In the example in Figure 5,
a variable mode predecessors query with respect to variable
x yields lines 1 and 2.

C. Slicing

A backward slice with respect to a set of starting points
S answers the question “What points in the program does
S depend on?”. The control dependence edges are used
to determine how control could have reached S, and the
data edges are used to determine how the variables used
at S were computed. A forward slice with respect to a set
of starting points S answers the question “What points in
the program depend on S”.
Like the predecessor and successor operations, the slice

operations have point and variable modes.
Slices are best used with care. Our experience is that the

slicing operations are generally not used much for program
understanding as they often to deliver too much informa-
tion to be easily comprehended.
Figure 4 shows a CodeSurfer File Viewer where a forward

slice has been invoked.

D. Chopping

A chop is a point-to-point reachability query in the
graph. It answers the question “How does execution of

Fig. 6. The result of doing a chop shows how information can flow
from one set of points to another. In this example, several points
light up as being places where a security policy is being violated.

the program points at A affect the execution of B?”. This
query can be used to determine the information flow be-
tween points in the program, or to show that two parts of
the program are independent.
As mentioned previously, some regulatory agencies have

software requirements that specify independence of com-
ponents. In cases where the components are in the same
program, a chop can be used to determine whether the
software satisfies these requirements.
For example, the NRL network pump is a device that

connects a high security network to a low security net-
work [20]. The security requirement is that data can be
transferred from the low side to the high side, but that no
information can be allowed to flow from high to low. The
exception is that communication acknowledgements are al-
lowed to flow from high to low.
This property can be tested using the chop operation.

The sources of the chop operation will be program points
where data is read from the port connected to the high-
security network. The targets of the chop operation will be
the points where the data is written to the low channel. If
the chop query returns the empty set, then this shows that
the security property holds. If not, then the result is the
set of points through which the property is violated.
Figure 6 shows the result of doing a chop on a mockup

of the NRL pump. The points in red show those places
involved in a violation of the security policy. There is no
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flow in the first example. The second example is a blatant
violation. It is useful to point out that the third example is
more subtle. Fresh high data, which is read into hi, is used
to change lo conditionally. The value of lo is then written
to the low security port. Information is communicated from
high to low via control dependence; low receives a 1 if and
only if the high input was non-zero. Therefore a single bit
of information has leaked. If high were 0-1 valued, this
would be perfect information.

D.1 Red/Black separation

One form of independence property common in securi-
ty applications is known as red/black separation. Values
stored in a set of private variables (the red set) must not
be allowed to flow to any of the set of public variables (the
black set). This is a subtly different requirement than that
expressed for the NRL pump. Here, the requirement is ex-
pressed in terms of the program’s variables as opposed to
program points.
CodeSurfer’s variable mode can be used to help explore

red/black separation properties. A variable-mode chop be-
tween a source set of variables VS and a target set of vari-
ables VT shows all ways in which information can flow be-
tween variables. This can be used to determine if a program
conforms to the desired red/black separation policies.

V. Model Checking

Model checking is a technique widely used in digital
hardware design to check properties of digital circuits [6].
We are adapting these techniques for doing model check-
ing on programs with the goal of discovering programming
flaws in systems. A full technical description of the model
checker is beyond the scope of this paper. For a descrip-
tion, see [11]. Here we give a brief outline of the approach
and describe how it can be used to answer questions that
may be raised in detailed software inspections.
In model checking of digital circuits, model checkers op-

erate on a graph where the vertices are the states of the
circuit and edges represent state transitions. In contrast,
the model-checking approach operates on the program’s
control-flow graph. Thus it can be thought of as checking
the program in terms of all the possible paths through the
program.
Unlike digital circuits, where the state space is “flat”,

the state space for a program’s control-flow graph is con-
strained by the fact that when a call to a function finish-
es, control can only pass back to the point of call. This
is the precisely the same issue that prevents straightfor-
ward graph reachability from being used to perform slicing
queries, as described in Section II-A. In this case we use a
space-efficient version of an algorithm due to Burkart and
Steffen [3].

The model checking algorithm is capable of checking for-
mulae in the full modal mu-calculus [21]. Translators can
be written to convert formulae in higher-level logics such
as Fair CTL into the mu-calculus.
The user interface to the model checker is neither of these

logics, but instead a set of prepackaged or “canned” asser-
tions about the behavior of the program in terms of valid
execution paths, each of which is parameterisable. When
invoked, the model checker evaluates the formula with its
parameters, and if the assertion fails, the user is allowed to
browse a counter-example in terms of a path through the
code.
The parameters to the assertions are atomic propositions

that can be specified in terms of the vertex being visited.
For example, one query is “There exists a path where X
holds until Y ”. When invoked, the user is prompted to
specify the propositions X and Y . These can be specified
in terms of a set of predefined functions, or in terms of an
arbitrary Scheme function. This function of course has ac-
cess to the full system dependence graph, so sophisticated
queries can be specified.
This mechanism can be put to use for posing queries

useful in software inspection. One question that might
be asked about a security-sensitive program is whether it
contains a backdoor security vulnerability. If the applica-
tion is a login program, then no user should be allowed
access without having first gone through an authentication
process. First the user would identify the points where
the user is given access. These will typically be calls to
a function. In the login program they might be calls to
exec(). Let this set of points be named X . The user
would then identify the points at which the authentication
of the user is confirmed. Let these points be called Y .
The canned query “No path goes through X without going
through Y ”. The resulting query will thus be “No path
goes through (all calls to exec()) without going through
(a call to authenticate())”.
Figure 7 shows a screen shot of CodeSurfer with the mod-

el checking interface being used to find possible sources of
errors in a program.

VI. Openness and Extensibility

CodeSurfer has been designed to be open and extensible
where possible in order to foster users who wish to integrate
with other tools, and to encourage users to build tools as
add-ons to the system. The following sections describe the
various ways in which CodeSurfer can be enhanced or ex-
tended.

A. Language.

The language-specific front-end to CodeSurfer produces
an intermediate form that consists of a control-flow graph
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Fig. 7. The model checker has been used to make an assertion about the program which has failed. The GUI provides a means for browsing
a path in the program counter-example. The interface for browsing the path is similar to a debugging tool being used to step through the
execution of a program

annotated with variable usage information. As the fron-
t end is a separate executable, users can replace it with
a front end for another language as long as programs in
that language can be expressed in terms of the control-
flow graph intermediate form. This has been done by
CodeSurfer users for Jovial, Verilog, a subset of VHDL, and
Promela—the language for the SPIN model checker [25].

B. Pointer Analysis.

CodeSurfer provides a choice of several pointer analysis
algorithms, each of which offers different choices for preci-
sion and scalability. The pre-packaged algorithms include
those of Andersen [1], Steensgaard [35] and Das [8]. As new
pointer analysis algorithms are constantly being develope-
d, the tool was designed so that new algorithms could be
easily incorporated. As with the language-specific front
end, the pointer analysis algorithms are packaged as sepa-
rate executables, so they can be easily replaced by a user
if necessary.

C. Scripting Language.

The CodeSurfer executable itself is written as a Scheme
interpreter extended with the ability to create and manip-
ulate system dependence graphs. The scheme interpreter
is based on the STk implementation from Erick Gallesio
at the University of Nice [15]. STk is fully integrated with
the Tk widget set—the entire CodeSurfer GUI is written
in Scheme using these widgets.

D. API to the Dependence Graph

The extensions to the Scheme interpreter introduce sev-
eral new primitive types and provide a range of opera-
tions on them. These correspond to the underlying de-
pendence graph data structures. For example, one type is
the PDG; the operation (pdg-vertices G) returns the set
of vertices associated with the program dependence graph
G. Thus users can extend the system with new kinds of
queries, or even new GUI elements. The model-checking
application described in section V above is just such an
extension.
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E. Import/Export formats

CodeSurfer provides the ability to export arbitrary sets
of program points to files in a range of different file format-
s. Additionally, some facilities are available for import-
ing file formats and converting them to sets of program
points. This mechanism facilitates integration with oth-
er tools. The set of standard formats is currently small,
but growing. It currently includes grep format and Pure-
Coverage format. A GXL filter [16] is planned for the fu-
ture. This feature is also open and extensible. The user
can define (in Scheme) new functions for converting sets of
program points to external file formats and back again.

F. Set Calculator Operations

The set calculator provides the ability to manipulate sets
of program points. The operations in the set calculator can
be extended, again using Scheme, by an end user.

VII. Relationship with other work

Many Software Inspection Tools focus on groupware for
the management of the software inspection process. These
tools include ICICLE [33], ASSIST [23], Suite [9] A com-
parison of such tools can be found in [24]. Few tools have
been for detailed fine-grain inspection of software, although
ICICLE does allow users to run lint on the C source files
during the inspection.
Dunsmore [10] argues for a greater role of comprehension

in the software inspection. There are many tools solely for
program understanding [31], [36], [28], but we believe there
are none that bring so much static analysis information to
the user.
CodeSurfer has some commonality with tools for reverse

engineering. These include the DMS Software Reengi-
neering Toolkit [32], Datrix at Bell Canada [5], and the
Portable Bookshelf [14]. However, unlike these system-
s, CodeSurfer makes no attempt to recover architectural
information—its analysis is limited to creating a fine-grain
system dependence graph. CodeSurfer does not have a
general purpose meta-query system in the sense of DMS.
Instead it makes do with basic context-free language graph
reachability queries that are customizable programmatical-
ly. CodeSurfer does not have the ability to transform the
program in the style of DMS, or TXL [7].
Other tools that provide a similar level of static analysis

as CodeSurfer include other software re-engineering tools
such as Refine [27] and Discover [26].

VIII. Conclusion and Future Work

We have described a tool for inspecting and manipulat-
ing the dependence-graph representation of a program for
the purposes of program understanding. We propose that

such a tool will be of use for doing formal software inspec-
tions. We have described the means by which the system
answers queries about the data flow properties of the pro-
gram using context-free language graph reachability. We
have described using a model checker to answer questions
about possible paths through the program.
Work on CodeSurfer is continuing under several research

contracts. There are two main thrusts in the development
of CodeSurfer. The first is to improve the scalability of the
system. This will be achieved partly by improving the effi-
ciency of the pointer analysis algorithms without sacrificing
precision, and partly by using demand-driven techniques to
reduce the up-front cost of building the dependence graph.
The other thrust is to extend the domain of applications
for the system. We are currently studying applying the
technology to software assurance, and to program testing
problems.
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